Notes

Derivations for all sections

Lab summaries

  1. MLK Day
  2. Probability and Bayes Rule
  3. Summarizing a posterior distribution
  4. Conjugate priors
  5. Objective Bayes priors
  6. Gibbs sampling
  7. Metropolis sampling
  8. MCMC convergence diagnostics
  9. Linear regression
  10. Advanced models
  11. Model selection
  12. Model selection criteria
  13. Hierarchical models