
ST440/540 Applied Bayesian Analysis 
Lab activity for 1/27/2025 

 

Announcements 

 

Quiz 4 due Friday 

Assignment 3 due February 7 

Exam 1 due February 17 and assigned roughly a week prior 

 

A. STUDENT QUESTIONS 
(1) When describing Bayes' Theorem you define the denominator as m(Y), and then go on to say that the 

marginal distribution can usually be ignored. Why is this the case? 

 

I suppose the real reason is that m(Y) is hard to compute so all the Bayesian computing methods are 

designed to avoid computing it 😉  But it really doesn’t affect the results anyways.  Here is a 

posterior beta distribution with and without m(Y) and the shape is the same, so the best guess 

about theta and the spread of the distribution are not affected by m(Y).  
theta <- seq(0,1,.001) 

a     <- 3 

b     <- 6 

plot(theta,dbeta(theta,a,b),type="l",main="With m(Y)") 

plot(theta,(theta^(a-1))*((1-theta)^(b-1)),type="l",main="Without m(Y)") 

 
(2) Is the Weak Law of Large Numbers relevant in Bayesian Statistics?  Discuss the WLLN and 

Convergence in Probability and Distribution in the Bayesian Framework. 

 

The WLLN says that the sample mean estimator converges to the population mean as the sample 

size increases.  In the last section of the class, we will study asymptotic properties (i.e., what 

happens as the sample size goes to infinity), and we will see that the same result holds for the 

posterior mean with some additional assumptions.  Convergence in P and D will also be discussed in 

this section. 

 



(3) One of the lectures mentioned Monte Carlo sampling is a better approach than integral or grid 

approximations, which tend to fail for high-dimensional approximations. Under what conditions, if any, 

does Monte Carlo simulation fail to give satisfactory results?  

 

One case where MC is inefficient is approximating small probabilities.  For example, if you are trying 

to compute say P(theta>100|Y) and the true probability is one in a million, you would need several 

million MC samples to get a decent approximation.  

 

(4) Could we review dealing with correlation of continuous random variables? There was a question 

about this in the homework and I was wondering what we should do in the case where there is 

correlation. 

 

This is hard to answer without using terms we haven’t discussed yet, but I would say in general 

there is nothing different about the way we handle parameters related to correlation than 

parameters related to the mean or variance.  You set up the model for the data in terms of all of 

these parameters and then apply Bayes Theorem to study the posterior.  Here is a future example to 

whet your appetite (don’t expect to understand it though, we are several weeks away from such a 

complicated analysis).   

 

(5) How much data (generally) is enough data where the prior stops mattering? 

 

It is really problem dependent, because it depends on how strong the prior is and how informative 

the data are about a particular parameter.  Rather than given a rule of thumb, I would suggest 

trying a few different priors for your problem and seeing if the results change.   

 

(6) The spell check problem was considerably difficult to set up. What is an efficient approach we could 

use to break down and interpret the information given to us in that problem (as it was quite dense), and 

how might we want to approach the situations in the future? 

 

Yes, it was dense.  This is why I make the solution available.  This is probably the hardest such 

problem you will encounter in this class.  A general strategy is to read the problem carefully and 

mathematically define what the data and parameters are.  I often find translating words to 

equations is the most important and difficult step.  One you have this, then the likelihood is the 

probability (or PDF) of observing the data given the parameters which is not trivial to compute of 

course, but is much easier to compute when things are clearly defined. 

 

(7) Are there additional R resources available in addition to the youtube video/more examples on how 

to approach such problems?  

(8) Is there any other resource that dives into the coding aspect for bayes in this class for specific 

sections? 

 

We will be using JAGS for almost all Bayesian computing after a few more weeks.  So, the base R 

code needed is for general tasks like loading data, making plots, etc.  This book is very popular. 

 

https://www4.stat.ncsu.edu/~bjreich/BSMdata/Guns.html
https://adv-r.hadley.nz/


 

 

(9) Not quite about material, but looking ahead to the first exam, when should we expect that first exam 

assignment to be released? 

 

It is due Feb 17 and I will assign it a week or so before the due date. 

 

(10) Would the Monte Carlo sampling method be a frequentist approach for approximation?  

 

Monte Carlo methods are also used in frequentist approaches such as the bootstrap.  The bootstrap 

is different because it is approximating the sampling distribution not the posterior distribution, but 

still uses MC sampling.   

 

(11) I could use some more clarity on what sets credible intervals/hypothesis tests apart from 

frequentist approaches. Is it that the Bayesian approach takes into account the prior? You would update 

your model over multiple iterations and a frequentist wouldn't?  

 

The main difference is philosophical.  A credible interval (test) is based on the posterior uncertainty 

of a parameter given one dataset, whereas a confidence interval measures random variation that 

would occur if we were to repeat the experiment and get a different dataset. 

 

 

  



B. HOMEWORK AND QUIZ SOLUTIONS 

 
Quiz 3: We gather n observations and fit the model Yi ~ Normal(µ,σ2).  Assume σ is known but µ is not 

known and we select an uninformative prior.  Our goal is to make a prediction for a new observation.  

 

(a) Define parametric uncertainty:  

Uncertainty about the true population parameter µ.  This is captured by the prior and posterior 

distributions. 

 

(b) Define sample/error uncertainty 

Randomness inherent to the data generation process, quantified by σ for a normal distribution. 

 

(c) Which of these two types of error dominates for large n?  Justify your answer. 

For large n, the posterior should concentration around the true value of µ and so error uncertainty 

dominates. 

 

Chapter 1, problem 6 

The conditional distribution is f(x1|x2) = f(x1,x2)/f(x2).  The marginal distribution f(x2) is hard to derive 

since it requires an integral.  However, since we will plot f(x1|x2) only as a function of x1, f(x2) is just a 

constant that makes the conditional distribution integrate to one.  Instead of computing f(x2) using 

integration, we can just numerically divide the sum of the joint distribution to approximation the 

conditional distribution.  This is what is happening in the normalizing_constant step in (a). 

(a) The function below plot f(x1|x2) for x2 = -3, -2, -1, 0.  Note that the plots are the same for x2 and -x2. 
joint <- function(x1,x2){ 

  (1/(2*pi)) * (1+x1^2+x2^2)^(-3/2) 

} 

 

plot(NA,xlab="X1",ylab="Conditional distribution", 

     xlim=c(-10,10),ylim=c(0,.005)) 

 

x1 <- seq(-10,10,.01) 

x2 <- c(-3,-2,-1,0) 

for(j in 1:4){ 

   density    <- joint(x1,x2[j]) 

   norm_const <- sum(density) 

   density    <- density/norm_const 

   lines(x1,density,col=j,lwd=2) 

} 

 

legend("topright",paste("X2 =",x2),col=1:4,lwd=2,bty="n") 



 
(b) They are not independent because the distribution of x1 depends on x2 (e.g., the variance is smaller 

for x2=0 than other values). 

(c) The mean of x1 is zero for all x2, therefore there is not a linear relationship between the mean of x1 

and x2.  This is a classic example of variables that are dependent but uncorrelated because their 

relationship can’t be captured by the mean only. 

 

Chapter 1, problem 9 

 

 https://www4.stat.ncsu.edu/~bjreich/BSMdata/C1#C1p9 

 

Last problem: If 70% of a population is vaccinated, and the hospitalization rate is 5 times higher for an 

unvaccinated person than a vaccinated person, what is the probability that a person is vaccinated given 

they are hospitalized? 

Let V = vaccinated and H = hospitalized, then the problem says Prob(V)=0.7, Prob(H|not V) = 5p and 

Prob(H|V) = p where p is the (unknown) probability of hospitalization for a vaccinated person.  For Bayes 

rule we will need Prob(H) = Prob(H|V)Prob(V) + Prob(H|not V)(1-Prob(V)) = p*0.7+5*p*0.3 = p*2.2.  

Bayes Rule is then 

Prob(V|H) = Prob(H|V)Prob(V)/Prob(H) = p*0.7/(2.2*p) = 0.70/0.85 = 32%. 

 

 

 

  

https://www4.stat.ncsu.edu/~bjreich/BSMdata/C1#C1p9


C. DISCUSSION QUESTIONS 
 

(1) Using the fact that f(x,y) = f(x|y)f(y) and f(x,y) = f(y|x)f(x), prove Bayes’ Theorem. 

 

We set them equal giving f(x|y)f(y) = f(y|x)f(x), and divided by f(y) gives 

f(x|y) = f(y|x)f(x)/f(y) 

which proves Bayes’ Theorem. 

 

(2) We’ll use these results throughout: 

 

(a) If Y|p~Binomial(n,p) and p ~ Beta(a,b), then p|Y ~ beta(Y+a,n-Y+b) 

(b) p ~ beta(1,1) is equivalent to p ~ Uniform(0,1)  

 

Say 1,000 high school students are randomly selected to enter a tutorial program.  It is known that 70% 

of the population from which they are drawn graduate from high school.  After the program, it is found 

that 725 of the 1,000 students graduate high school.  We then want to test the hypotheses 

Ho: the graduation rate for students in the program is less than or equal to 70% 

Ha: the graduation rate for students in the program is greater than 70% 

Can we conclude the program is effective? Here are some plots/stats that may be useful: 
> Y <- seq(650,800,1) 

> plot(Y,dbinom(Y,1000,0.7)) 

> abline(v=700) 

> abline(v=725) 

> 1-pbinom(724,1000,0.7) 

[1] 0.04459259 

 

> p <- seq(0.6,0.8,0.001) 

> plot(p,dbeta(p,725+1,1000-725+1),type="l") 

> abline(v=0.7) 

> pbeta(0.7,725+1,1000-725+1) 

[1] 0.04272651 

 

 

(a) How would a frequentist test of these hypotheses?  Can we conclude the program was effective?  

Explain the results as if you’re presenting them to a non-statistician. 

 

Let n=1000 and Y be the number of students that graduate.  We assume Y|theta ~ 

Binomial(n,theta).  Under Ho, theta=0.7 and P(Y>=725) = 0.044 is the p-value.  Since the p-value is 

less than 0.05, we reject Ho and conclude the program is effective. 

 

(b) How would a Bayesian test these hypotheses?  Can we conclude the program was effective? Explain 

the results as if you’re are presenting them to a non-statistician. 

 



Likelihood: Since Y is an integer between 0 and n we assume it is distributed Y|theta ~ 

Binomial(n,theta) 

 

Prior: Since theta is a probability (real number between 0 and 1) we set prior theta ~ Beta(a,b).  To 

make the prior uninformative we set a=b=1.   

 

Posterior: The posterior is then theta|Y ~ beta(Y+a,n-Y+b).  The code above computes P(Ha|Y) = 

P(theta<.7|Y) = 0.04, so the probability that the program is effective is 96%.  

 

(c) Define a p-value and posterior probability of Ho, and describe how they are different. 

 

The p-value is the probability, assuming null is true, of observing data more extreme than we 

observed.  The posterior probability of the null is just what it says, P(Ho|Y)=P(theta<0.7|Y).  The p-

value quantifies uncertainty through Y|theta and the posterior probability of the null through 

theta|Y. 

 

 

  



(3) Say we presented the results in (1) to the school board but they did not feel the study is large enough 

to be definitive.  So, the next school year you enroll an additional 1,000 students and record that 745 

graduated from high school. 

   

(a) Describe how you would conduct a Bayesian analysis of these data. Give the likelihood, prior and 

posterior and describe how you would summarize the results.  

 

Option 1: We pool the data from the two years as Y = 725+745 = 1470 and n=2000 and then do the 

same analysis as in 1b, i.e., theta|Y ~ beta(Y+1,n-Y+1) = beta(1470+1,2000-1470+1) and compute 

posterior probability of Ho.  

 

Option 2: Treat the posterior from the first 1000 as the prior for the second 1000 and then compute 

posterior probability of Ho.  After the first 1000 we have theta following a beta distribution with 

a=725+1 and b = 1000-725+1.  With this prior, likelihood Y|theta ~ Binomial(1000,theta) and Y=745, 

the final posterior is theta ~ beta(745+a,1000+b) = beta(745+725+1,1000+1000+1).    

 

It turns out both options are equivalent!!! 

 

(b) What assumptions you are making and how might you justify them? 

 

We are assuming the success probability is the same in both years.  This could be tested by 

comparing data across years. 

 

(4) The data from the initial Moderna COVID vaccine trial are in the table below. 

Placebo Vaccine 

Infected Participants Infected Participants 

185 14073 11 14134 

 

Let 𝜃0 be the probability of getting infected under placebo and 𝜃1 be the probability under vaccine.   

 

(a) Can we say 𝜃0 = 185/14073 = 0.01315 and 𝜃1 = 11/14134 = 0. 00078? Why? 

 

No.  Because these are sample proportions (statistics) not the true probabilities (parameters). 

 

(b) What priors would you pick for 𝜃0 and 𝜃1? 

 

 𝜃0 ~ Beta(1,1) and 𝜃1 ~ Beta(1,1) (independent of each other) puts equal mass on all probabilities 

and is thus a reasonable starting place. 

(c) How would you conduct a Bayesian test that the vaccine is effective?  Give the likelihood, priors and 

posterior and how you would summarize the results. 

 

Say n0 = 14073 and n1 = 14134 are the number of observations in each group, and Y0 = 185 and Y1 = 

11 are the number that get infected. The likelihood is chosen to be Y0 |theta0 ~ Binomial(n0,theta0) 

and Y1 ~ Binomial(n1,theta1) because both Y0 and Y1 are counts bounded by the sample size.  With 



the prior in (b) we have theta0 | Y0 ~ beta(Y0+1,n0-Y0+1) and theta1 | Y1 ~ beta(Y1+1,n1-Y1+1).  

We summarize the results by computing P(theta1<theta0|Y0,Y1), which is approximated using 

Monte Carlo sampling below.  The probability is 1.0 that the infection probability is lower in the 

vaccine group than the placebo group. 

 
> n0 <- 14073 

> n1 <- 14134 

> Y0 <- 185 

> Y1 <- 11 

> S  <- 10000 

 

> theta0 <- rbeta(S,Y0+1,n0-Y0+1)  

> theta1 <- rbeta(S,Y1+1,n1-Y1+1) 

> hist(theta0,xlim=c(0,0.02)) 

> hist(theta1,xlim=c(0,0.02)) 

> hist(theta1-theta0) 

> mean(theta1>theta0) 

0.0 

 

 
 

 (d) What are some key assumptions you’re making and how might you justify them? 

 

Assuming the people in the two groups are comparable, which should be the case if they were 

randomized into the two groups.  A binomial distribution assumes all patients are independent.   

 

 

(5) Communicating results from studies such as in (4) is difficult because the probabilities are so small.  

Therefore, you often hear statements like “the odds of contracting the virus are X times higher if you are 

unvaccinated compared to vaccinated.”   (the odds of an event are the probability it occurs divided by 

the probability it does not occur.)  Write R code to use the data from (3) to compute a point estimate, 

95% credible interval and plot of the posterior distribution of the odds ratio X. 

 

The posterior mean and 95% credible interval are 17.1 and (9.4,30.9) and the histogram is below. 

 
> theta0 <- rbeta(S,Y0+1,n0-Y0+1)  

> theta1 <- rbeta(S,Y1+1,n1-Y1+1) 

> odds0  <- theta0/(1-theta0) 

> odds1  <- theta1/(1-theta1) 

> odds_ratio <- odds0/odds1 

> hist(odds_ratio) 



> mean(odds_ratio) 

[1] 17.16515 

> quantile(odds_ratio,c(0.025,0.975)) 

     2.5%     97.5%  

 9.359827 30.875484 

 

  
 

(6) To test for bank fraud, we set up a test where two parties should have independent random 

values generated from {1,2,…,m} for m=100 and we check whether there numbers match as an 

indicator of fraud.  We conduct n=200 trials and record Y, the number times where the values 

match.  If there is not fraud, the data are distributed Y|θ0 ~ Binomial(n,θ0) for θ0 = 1/m.  We fit the 

model Y|θ ~ Binomial(n,θ) and are interested in testing whether θ > θ0. 

 

(a) Say we observe Y=0.  What is the frequentist estimate of θ and its standard error? 

 

The (standard) frequentist estimator is the sample proportion p = Y/n = 0/200 = 0.  The 

approximate standard error is sqrt{p(1-p)/n} = 0.  So, the 95% interval is 0±0. 

 

(b) Give a prior for θ that is centered around θ0.  Why is an informative prior justified here? 

 

One option is a θ ~ Beta(a,b) prior with a=20θ0 and b=20(1-θ0).  This prior has mean is θ0 and 

reflects the prior of only a small degree of fraud, say θ0<0.1.  
 

 

N      <- 100 

theta0 <- 1/N 

n      <- 200 

a      <- 20*theta0 

b      <- 20*(1-theta0) 

theta<-seq(0,.1,0.001) 

plot(theta,dbeta(theta,a,b),type="l") 

abline(v=1/N,col=2) 

abline(0,0) 

 



 

(c) Summarize the posterior when Y=0. 

The posterior is θ|Y ~ Beta(a+Y,b+n-Y), i.e., θ |Y ~ Beta(2.2, 217.8).  The posterior mean 0.01, 

posterior 95% interval (0.001,0.027) and posterior probability that θ > θ0 equal to 0.41.  

Therefore, there is little evidence of fraud.    

 
> A <- a+Y 

> B <- b+n-Y 

> A/(A+B) 

[1] 0.01 

> qbeta(c(0.025,0.975),A,B) 

[1] 0.001406907 0.026718604 

> 1-pbeta(theta0,A,B) 

[1] 0.4116553 

 

(7) How would you summarize the posterior distributions below in a table? 

 
Left: This appears to be approximately Gaussian so a mean and variance will suffice.  

Right: This is very complicated and so it’s probably better to show the plot. 

 

(8) Say we observe Y=9 successes in n=10 trials and use a uniform Beta(1,1) prior for the success 

probability so the posterior is Beta(Y+a,n-Y+b) = Beta(10,2). 

> theta <- seq(0,1,0.01) 

> plot(theta,dbeta(theta,10,2),type="l",xlab=expression(theta),ylab="Posterior distribution") 



 
(a) Give R code to compute an equal tailed 90% interval. 

 

> qbeta(0.05,10,2) 

[1] 0.6356405 

> qbeta(0.95,10,2) 

[1] 0.9666808 

 

(b) The highest posterior density interval “searches for the smallest interval that contains the proper 

probability.”  Write (or at least sketch out) R code to compute this interval. 
 
> p   <- seq(0,0.1,length=100) 

> lo  <- rep(0,100) 

> hi  <- rep(0,100) 

> for(i in 1:100){ 

+  lo[i] <- qbeta(p[i],10,2) 

+  hi[i] <- qbeta(1-(0.1-p[i]),10,2) 

+ } 

> width    <- hi-lo 

> shortest <- which.min(width) 

> p[shortest] 

[1] 0.09292929 

> lo[shortest] 

[1] 0.683717 

> hi[shortest] 

[1] 0.988255 

 

(c) Which interval to you expect to have this highest lower bound?  That is, if the first is (LET, UET) and the 

second is (LHPD, UHPD), do you expect LET>LHPD?  

 

The HPD interval has higher lower bound. Because the distribution is left-skewed, the HPD includes 

more of the right side of the distribution. 


