
Chapter 3.4

Diagnosing and improving
convergence

1 / 18

Tuning the MCMC algoritm

I MCMC is beautiful because it can handle virtually any
statistical model and it is usually pretty easy to write
functional code

I However, for hard problems great care must be taken to
ensure that the algorithm has converged

I There are three main decisions:
I Selecting the initial values

I Determining if/when the chain(s) has converged

I Selecting the number of samples needed to approximate
the posterior

2 / 18

Initial values

I The algorithm will eventually converge no matter what
initial values you select

I However taking time to select good initial values will speed
up convergence

I It is important to try a few initial values to verify they all give
the same result

I Usually 3-5 separate chains is sufficient

I Option 1: Select good initial values using method of
moments or MLE

I Option 2: Purposely pick bad but different initial values for
each chain to check convergence

3 / 18

Convergence

I The first few samples are probably not draws from the
posterior distribution

I It can take hundreds or even thousands of iterations to
move from the initial values to the posterior

I When the sampler reaches the posterior this is called
convergence

I Samples before convergence are discard as burn-in

I After convergence the samples should not converge to a
single point!

I They should be draws from the posterior, and ideally look
like a caterpillar or bar code

4 / 18

Convergence in a few iterations

0 200 400 600 800 1000

−
4

−
2

0
2

4

Iteration number

M
C

M
C

 s
am

pl
e

5 / 18

Convergence in a few hundred iterations

0 200 400 600 800 1000

−
2

0
2

4
6

Iteration number

M
C

M
C

 s
am

pl
e

6 / 18

This one never converged

0 200 400 600 800 1000

0
5

10
15

20

Iteration number

M
C

M
C

 s
am

pl
e

7 / 18

Convergence is questionable

0 200 400 600 800 1000

−
2

0
2

4

Iteration number

M
C

M
C

 s
am

pl
e

8 / 18

Convergence diagnostics

I So far we have visually inspected the chains for
convergence

I There are many formal diagnostics

I The CODA package in R has dozens of diagnostics

I Most give a measure of convergence for each parameter

I Checking convergence using these one-number
summaries is more efficient and objective than visual
inspection

9 / 18

Convergence diagnostics

I Did my chains converge?

I Geweke

I Gelman-Rubin

I Did I run the sampler long enough after convergence?

I Effective sample size

I Standard errors for the posterior mean estimate

10 / 18

Examples

I The JAGS function coda.samples returns sample is the
format that can be passed to the CODA function which
actually computes the diagnostics

I The course website uses CODA to access convergence for
a best-case and a worst-case scenario

11 / 18

Geweke diagnostic

I Compares the mean in the beginning of the chain with the
mean at the end of the chain

I Can we used for a single chain

I Done separately for each parameter

I The JAGS default is to compare the first 10% with the last
50%

I The test accounts for autocorrelation

I The test statistic is a z-score, so |Z | > 2 indicates poor
convergence

12 / 18

Gelman-Rubin statistic

I If we run multiple chains, we hope that all chains give
same result

I The Gelman-Rubin statistics measures agreement
between chains

I Is it essentially an ANOVA test of whether the chains have
the same mean

I It is scaled so that 1 is perfect and 1.1 is decent but not
great convergence

I JAGS plots the statistic over iteration

I When the statistic reaches one this indicates convergence

13 / 18

Autocorrelation

I Ideally the samples would be independent across iteration

I The autocorrelation function ρ(h) is the correlation
between samples h iterations apart

I JAGS plots the autocorrelation as a function of h

I Lower values are better, but if the chains are long enough
even large values can be OK

I Thinning: If autocorrelation is zero after lag h you can thin
the samples by h to achieve independence

I This is always less efficient than using all samples, but can
save memory

14 / 18

Effective sample size

I Highly correlated samples have less information than
independent samples

I Say S is the actual number of MCMC samples

I The effective samples size is

ESS =
S

1 + 2
∑∞

h=1 ρ(h)

I The correlated MCMC sample of length S has the same
information as ESS independent samples

I ESS should be at least a few thousand for all parameters

15 / 18

Standard errors of posterior mean estimates

I The sample mean of the MCMC draws is an estimate of
the posterior mean

I The standard error of this estimate as another diagnostic

I Assuming independence the standard error is

Naive SE =
s√
S

where s is the sample SD and S is the number of samples

I A more realistic standard error is

Times-series SE =
s√

ESS

16 / 18

What to do if the chains haven’t converged?

I Determining if chains have converged is not that difficult

I Improving converge is challenging

I We will discuss options in lab

I Hopefully we can get a list of 10 or so

17 / 18

What to do for massive datsets?

I MAP estimation

I Bayesian CLT

I Variational Bayes: Approximates the posterior by assuming
the posterior is independent across parameters (fast, but
questionable statistical properties)

I Parallel computing: MCMC is inherently sequential, but
often some steps can be done in parallel, e.g., onerous
likelihood computations

I Divide and Conquer: Split the data into batches and
analyze them in parallel, and then carefully combine the
result of the batch analyses

18 / 18

