ST440/540 Applied Bayesian Analysis
Lab activity for 2/17/2025

Announcements

- Exam 1 solution will be posted here on Monday
https://st540.wordpress.ncsu.edu/assignments/

- Quiz due Friday

- The next homework assignment is due Feb 28

A. STUDENT QUESTIONS

None this week due to the exam

B. QUIZ AND HOMEWORK SOLUTIONS

None this week due to the exam



C. DISCUSSION QUESTIONS

(1) In this problem we will compute MAP estimates of Gaussian models

(a) Say Y ~ Normal(, 62) with prior m(i) = 1 and 62 assumed to be known. Compute the MAP
estimator of p.

(b) Say Y3, ..., ¥, ~ Normal(p, 02) with prior m(p) = 1 and 62 assumed to be known. Compute the MAP
estimator of p.

(2) Say Y; ~ Normal(By + B X;, 02) fori = 1, ...,n with prior m(By, ;) = 1 and o2 assumed to be
known. Show that the MAP estimator of § = (Bg, B1) is the least squares estimator

n
B = argming Z(Yi — Bo — XiB1)?
=1

(you don’t have to compute the derivation, just get far enough to show equivalence).






(3) Consider the multiple regression model
Y = ﬂo +X1ﬂ1 + "'+Xpﬁp +¢

Say our goal is to study the effect of solar radiation (X1) on ozone (Y), as measured by the slope Bi1. Use
the output below to approximate the marginal posterior distribution of B1, p(B1]Y), including (a) a point
estimate, (b) 95% credible set, and (c) the posterior probability that solar radiation has a positive effect
on ozone. Justify this approximation, including listing your key assumptions.

> data(airquality)

> summary (1lm(Ozone~Solar.R+Wind+Temp, data=airquality))

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -64.34208 23.05472 -2.791 0.00623 **

Solar.R 0.05982 0.02319 2.580 0.01124 *
Wind -3.33359 0.65441 -5.094 1.52e-06 ***
Temp 1.65209 0.25353 6.516 2.42e-09 ***

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 *.” 0.1 » " 1
Residual standard error: 21.18 on 107 degrees of freedom
(42 observations deleted due to missingness)

Multiple R-squared: 0.6059, Adjusted R-squared: 0.5948
F-statistic: 54.83 on 3 and 107 DF, p-value: < 2.2e-16

Evoking the Bayesian Central Limit Theorem, we can approximate

betal|Y ~ Normal(0.05982,0.023192).

Therefore approximately (a) the posterior mean is 0.05920, a 95% credible interval is
gnorm(c(0.025,0.975), 0.05982,0.02319) and P(betal>|Y)=1-pnorm(0, 0.05982,0.02319).



(4) Assume the model Y|a2,b ~ Normal(0,62), 6%|b~InvGamma(1, b) and b~Gamma(1,1).

(a) Derive the full conditional distribution of 2. (b) Derive the full conditional distribution of b.
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(c) Sketch out a Gibbs sampler to draw samples from the joint distribution of 62, b|Y.
Set initial values for 2 and b
(1) Draw a2 |b from the inverse gamma distribution in (a)
(2) Draw b|a? from a gamma distribution (b)
Repeat (1) and (2) S times
(d) How would you pick initial values?

Since Y has mean zero, YA2 is an estimate of the variance and could be used as in initial value for a?2.
The model of an InvGamma distribution is b/(a+1), so with a=1 maybe 2¢2.for the initial value of b



(e) Here are 1000 samples from both parameters (code below) with Y=3, would you say the chain has
converged?

I’d say they have converged, but need to run long to give a good approximation to the posterior.
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S <- 1000

Y <- 3

keepers <- matrix(0,S,2)
sigma2 <-1

b <-1

for(iter in 1:8){
sigma?2 <- 1/rgamma(1,1/2+1,Y/2+b)
b <- rgamma (1,1+1,1+1/sigma2)

keepers[iter,] <- c(sigma2,b)
}
plot (keepers[,1],type="1",xlab="Iteration", ylab="Sigma2")
plot (keepers[,2],type="1",xlab="Iteration", ylab="b")



(5) Assume the model Y|N,A ~ Poisson(NA). We have been assuming that N is known and A ~
Gamma(a,b), in which case A|Y ~ Gamma(Y+a,N+b). Let’s say we don’t know N and has prior N ~
Gamma(c,d). Below is a Gibbs sampler to approximate the posterior of N,A|Y.

(a) Derive the full conditional distribution of A.

It is the same as before because the usual analysis also conditions on N, so A|Y,N ~
Gamma(Y+a,N+b).

(b) Derive the full conditional distribution of N.

The derivation is actually the same but just with the role of N and A reversed and priors defined with
(c,d) rather than (a,b), so N |Y, A~ Gamma(Y+c, A+d).

(c) Sketch out a Gibbs sampler to draw samples from the joint distribution of A, N|Y.
Set initial values for A and N
(1) Draw A]Y,N ~ Gamma(Y+a,N+b)
(2) Draw N |Y, A ~ Gamma(Y+c, A+d).
Repeat (1) and (2) S times
(d) How would you pick initial values?
The of Y is NA, so maybe N = A = sqgrt(Y).
(e) Would you say the algorithm has converged?
Yes, although longer chains would be better.

(f) How would you approximate the posterior mean and 95% interval of the mean NA? What do you
expect it to be?

Compute NA for each draw and make a histogram of the S samples. | expect it would converge well
and be centered tightly on Y.

(g) Why the last plot so strange?

Any combination of N and A that give NA near Y is a reasonable value, and there is not way to
distinguish between say N=1 and A=Y versus N=Y and A=1. The joint posterior thus spans the curve
NA=Y,ie., N=Y/N



Y <- 100
a <- b <- ¢c <-d <-0.01

# Initial values
N <- 10
lam <- 10

# Store output

S <= 10000

samps <- matrix(10,S,2)
colnames (samps) <- c("N","lambda")

# Go Gibbs!
for(iter in 2:S) {
lam <- rgamma (1, Y+a,N+b)
N <- rgamma (l,Y+c, lam+d)

samps [iter,] <- c(N,lam)

plot (samps|[, 1], type="1",xlab="Iteration",ylab="N")
plot (samps|[, 2], type="1",xlab="Iteration", ylab="1ambda")
plot (samps, xlab="N",ylab="lambda")
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