
ST440/540 Applied Bayesian Analysis 
Lab activity for 2/17/2025 

 

Announcements 
- Exam 1 solution will be posted here on Monday 

                            https://st540.wordpress.ncsu.edu/assignments/ 

- Quiz due Friday 

- The next homework assignment is due Feb 28 

 

A. STUDENT QUESTIONS 
 

None this week due to the exam 

 

B. QUIZ AND HOMEWORK SOLUTIONS 

 
None this week due to the exam 

 

  



C. DISCUSSION QUESTIONS 
 

(1) In this problem we will compute MAP estimates of Gaussian models 

(a) Say 𝑌 ∼ Normal(μ, σ2) with prior π(μ) = 1 and σ2 assumed to be known.  Compute the MAP 

estimator of μ. 

(b) Say 𝑌1, … , 𝑌𝑛 ∼ Normal(μ, σ2) with prior π(μ) = 1 and σ2 assumed to be known.  Compute the MAP 

estimator of μ. 

See the solution on the next page 

(2) Say 𝑌𝑖 ∼ Normal(β0 + β1𝑋𝑖, 𝜎2) for 𝑖 = 1, … , 𝑛 with prior 𝜋(β0, β1) = 1 and 𝜎2 assumed to be 

known.  Show that the MAP estimator of 𝛽 = (β0, β1) is the least squares estimator  

β̂ = 𝑎𝑟𝑔𝑚𝑖𝑛β ∑(𝑌𝑖 − β0 − 𝑋𝑖β1)2

𝑛

𝑖=1

 

 (you don’t have to compute the derivation, just get far enough to show equivalence). 

See the solution on the next page 



  



(3) Consider the multiple regression model 

𝑌 =  𝛽0 + 𝑋1𝛽1 + ⋯ + 𝑋𝑝𝛽𝑝 + 𝜀 

Say our goal is to study the effect of solar radiation (X1) on ozone (Y), as measured by the slope β1.  Use 

the output below to approximate the marginal posterior distribution of β1, p(β1|Y), including (a) a point 

estimate, (b) 95% credible set, and (c) the posterior probability that solar radiation has a positive effect 

on ozone.  Justify this approximation, including listing your key assumptions.   

> data(airquality) 

> summary(lm(Ozone~Solar.R+Wind+Temp,data=airquality)) 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -64.34208   23.05472  -2.791  0.00623 **  

Solar.R       0.05982    0.02319   2.580  0.01124 *   

Wind         -3.33359    0.65441  -5.094 1.52e-06 *** 

Temp          1.65209    0.25353   6.516 2.42e-09 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 21.18 on 107 degrees of freedom 

  (42 observations deleted due to missingness) 

Multiple R-squared:  0.6059,    Adjusted R-squared:  0.5948  

F-statistic: 54.83 on 3 and 107 DF,  p-value: < 2.2e-16 

 

Evoking the Bayesian Central Limit Theorem, we can approximate 

 

                               beta1|Y ~ Normal(0.05982,0.023192). 

 

Therefore approximately (a) the posterior mean is 0.05920, a 95% credible interval is 

qnorm(c(0.025,0.975), 0.05982,0.02319) and P(beta1>|Y)=1-pnorm(0, 0.05982,0.02319). 

 

  



(4) Assume the model 𝑌|𝜎2, 𝑏 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2), 𝜎2|𝑏~𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(1, 𝑏) and 𝑏~𝐺𝑎𝑚𝑚𝑎(1,1). 

(a) Derive the full conditional distribution of 𝜎2. (b) Derive the full conditional distribution of b. 

 

(c) Sketch out a Gibbs sampler to draw samples from the joint distribution of 𝜎2, 𝑏|𝑌. 

Set initial values for  𝜎2 and 𝑏 

(1) Draw 𝜎2|𝑏 from the inverse gamma distribution in (a) 

(2) Draw 𝑏|𝜎2 from a gamma distribution (b) 

Repeat (1) and (2) S times 

(d) How would you pick initial values? 

Since Y has mean zero, Y^2 is an estimate of the variance and could be used as in initial value for 𝜎2. 

The model of an InvGamma distribution is b/(a+1), so with a=1 maybe 2𝜎2.for the initial value of b 



(e) Here are 1000 samples from both parameters (code below) with Y=3, would you say the chain has 

converged? 

I’d say they have converged, but need to run long to give a good approximation to the posterior. 

 

S       <- 1000 

Y       <- 3 

keepers <- matrix(0,S,2) 

sigma2  <- 1 

b       <- 1 

for(iter in 1:S){ 

   sigma2         <- 1/rgamma(1,1/2+1,Y/2+b) 

   b              <- rgamma(1,1+1,1+1/sigma2) 

   keepers[iter,] <- c(sigma2,b) 

}       

plot(keepers[,1],type="l",xlab="Iteration",ylab="Sigma2") 

plot(keepers[,2],type="l",xlab="Iteration",ylab="b")  



(5) Assume the model Y|N,λ ~ Poisson(Nλ).  We have been assuming that N is known and λ ~ 

Gamma(a,b), in which case λ|Y ~ Gamma(Y+a,N+b).  Let’s say we don’t know N and has prior N ~ 

Gamma(c,d).  Below is a Gibbs sampler to approximate the posterior of N,λ|Y. 

(a) Derive the full conditional distribution of λ. 

It is the same as before because the usual analysis also conditions on N, so λ|Y,N ~ 

Gamma(Y+a,N+b).   

(b) Derive the full conditional distribution of N. 

The derivation is actually the same but just with the role of N and λ reversed and priors defined with 

(c,d) rather than (a,b), so N |Y, λ ~ Gamma(Y+c, λ+d).   

(c) Sketch out a Gibbs sampler to draw samples from the joint distribution of 𝜆, 𝑁|𝑌. 

Set initial values for λ and N 

(1) Draw λ|Y,N ~ Gamma(Y+a,N+b) 

(2) Draw N |Y, λ ~ Gamma(Y+c, λ+d).   

Repeat (1) and (2) S times 

(d) How would you pick initial values? 

The of Y is Nλ, so maybe N = λ = sqrt(Y). 

(e) Would you say the algorithm has converged? 

Yes, although longer chains would be better. 

(f) How would you approximate the posterior mean and 95% interval of the mean Nλ?  What do you 

expect it to be? 

Compute Nλ for each draw and make a histogram of the S samples.  I expect it would converge well 

and be centered tightly on Y. 

(g) Why the last plot so strange? 

Any combination of N and λ that give Nλ near Y is a reasonable value, and there is not way to 

distinguish between say N=1 and λ=Y versus N=Y and λ=1.  The joint posterior thus spans the curve 

Nλ ≈ Y, i.e., N ≈ Y/N  
 

  



Y <- 100 

a <- b <- c <- d <- 0.01 

 

# Initial values 

N   <- 10 

lam <- 10 

 

# Store output 

S <- 10000 

samps           <- matrix(10,S,2) 

colnames(samps) <- c("N","lambda") 

 

# Go Gibbs! 

for(iter in 2:S){ 

  lam          <- rgamma(1,Y+a,N+b) 

  N            <- rgamma(1,Y+c,lam+d) 

  samps[iter,] <- c(N,lam) 

} 

 

plot(samps[,1],type="l",xlab="Iteration",ylab="N") 

plot(samps[,2],type="l",xlab="Iteration",ylab="lambda") 

plot(samps,xlab="N",ylab="lambda") 

 

 
 


