ST440/540 Applied Bayesian Analysis Lab activity for 2/17/2025

Announcements

- Exam 1 solution will be posted here on Monday

https://st540.wordpress.ncsu.edu/assignments/

- Quiz due Friday
- The next homework assignment is due Feb 28

A. STUDENT QUESTIONS

None this week due to the exam

B. QUIZ AND HOMEWORK SOLUTIONS

None this week due to the exam

C. DISCUSSION QUESTIONS

(1) In this problem we will compute MAP estimates of Gaussian models

(a) Say $Y \sim \text{Normal}(\mu, \sigma^2)$ with prior $\pi(\mu) = 1$ and σ^2 assumed to be known. Compute the MAP estimator of μ .

(b) Say $Y_1, ..., Y_n \sim \text{Normal}(\mu, \sigma^2)$ with prior $\pi(\mu) = 1$ and σ^2 assumed to be known. Compute the MAP estimator of μ .

See the solution on the next page

(2) Say $Y_i \sim \text{Normal}(\beta_0 + \beta_1 X_i, \sigma^2)$ for i = 1, ..., n with prior $\pi(\beta_0, \beta_1) = 1$ and σ^2 assumed to be known. Show that the MAP estimator of $\beta = (\beta_0, \beta_1)$ is the least squares estimator

$$\hat{\beta} = argmin_{\beta} \sum_{i=1}^{n} (Y_i - \beta_0 - X_i \beta_1)^2$$

(you don't have to compute the derivation, just get far enough to show equivalence).

See the solution on the next page

(1)
$$p(n|Y) \neq f(Y|n) T(n)^{-1} + f(Y|n) + e^{-\frac{1}{2}\sigma + (Y-n)^{2}}$$

 $log[p(n|Y)] = (onstat - \frac{1}{2}e^{-(Y-n)^{2}}$
 $\frac{1}{2n} = \frac{1}{2}(Y-n) = 0 = 2 \quad \text{fram} = Y$
 $\int \frac{1}{2n} duadarce}$
 $\frac{1}{2n} \int \frac{1}{2n} (y_{1}-n) + f(Y_{1},...,Y_{n}|n) T(n) \neq T = e^{-\frac{1}{2n}e(Y_{1}-n)^{2}}$
 $log[f(n|Y)] \neq f(Y_{1},...,Y_{n}|n) T(n) \neq T = e^{-\frac{1}{2n}e(Y_{1}-n)^{2}}$
 $log[f(n|Y)] = (onstat - \frac{1}{2n} + \frac{n}{2}(Y_{1}-n)^{2})$
 $\frac{1}{2n} = \frac{1}{n^{2}} \sum (y_{1}-y_{n}) = \frac{1}{n^{2}} (\frac{n}{2}(Y_{1}-n)^{2})$
 $\frac{1}{2n} = \frac{1}{n^{2}} \sum (y_{1}-y_{n}) = \frac{1}{n^{2}} (\frac{n}{2}(Y_{1}-n)^{2})$
 $e^{-\frac{1}{2n}} \sum \frac{1}{n} \frac{1}{n^{2}} \frac{1}{n^{2}$

(3) Consider the multiple regression model

$$Y = \beta_0 + X_1 \beta_1 + \dots + X_p \beta_p + \varepsilon$$

Say our goal is to study the effect of solar radiation (X₁) on ozone (Y), as measured by the slope β_1 . Use the output below to approximate the marginal posterior distribution of β_1 , p(β_1 |Y), including (a) a point estimate, (b) 95% credible set, and (c) the posterior probability that solar radiation has a positive effect on ozone. Justify this approximation, including listing your key assumptions.

```
> data(airquality)
> summary(lm(Ozone~Solar.R+Wind+Temp,data=airquality))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -64.34208 23.05472 -2.791 0.00623 **
Solar.R 0.05982 0.02319 2.580 0.01124 *
Wind
           -3.33359 0.65441 -5.094 1.52e-06 ***
Temp
           1.65209 0.25353 6.516 2.42e-09 ***
___
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 21.18 on 107 degrees of freedom
 (42 observations deleted due to missingness)
Multiple R-squared: 0.6059, Adjusted R-squared: 0.5948
F-statistic: 54.83 on 3 and 107 DF, p-value: < 2.2e-16
```

Evoking the Bayesian Central Limit Theorem, we can approximate

beta1 | Y ~ Normal(0.05982,0.02319²).

Therefore approximately (a) the posterior mean is 0.05920, a 95% credible interval is qnorm(c(0.025,0.975), 0.05982,0.02319) and P(beta1>|Y)=1-pnorm(0, 0.05982,0.02319).

(4) Assume the model $Y|\sigma^2, b \sim Normal(0, \sigma^2), \sigma^2|b \sim InvGamma(1, b)$ and $b \sim Gamma(1, 1)$. (a) Derive the full conditional distribution of σ^2 . (b) Derive the full conditional distribution of b.

$$\begin{split} \rho(\sigma^{2}|Y, b) & \neq \rho(Y|\sigma^{2}, b) \rho(\sigma^{2}|b) \rho(b) \\ & \downarrow \left[(\sigma^{2})^{-\frac{1}{2}} - \frac{1}{\sigma^{2}} \frac{y^{2}}{2} \right] \left[(\sigma^{2})^{(1+1)} - \frac{b}{\sigma^{2}} \right] \\ & \downarrow \left[(\sigma^{2})^{-\frac{1}{2}+1} - \frac{1}{\sigma^{2}} (\frac{y^{2}}{2} + b) \right] \\ & = \sum \sigma^{2}|b,Y| \sim \operatorname{Inv} \operatorname{Gamma} \left(\frac{3}{2} + 1 + \frac{y^{2}}{2} - b \right) \\ & \frac{d \operatorname{desn}' + \operatorname{cetruelly} \operatorname{involve} b}{d \operatorname{desn}' + \operatorname{cetruelly} \operatorname{involve} b} \\ \rho(b|\sigma^{2},Y) & \downarrow \left\{ (y + \sigma^{2}, b) \right\} \rho(\sigma^{2}|b) \rho(b) \\ & \downarrow \left[\frac{b}{e} - \frac{b}{\sigma^{2}} \right] \left[\frac{-b}{e} \right] \\ & \downarrow \left[\frac{b}{e} - \frac{b}{\sigma^{2}} \right] \left[\frac{-b}{e} \right] \\ & \downarrow \left[\frac{b}{e} - \frac{b}{\sigma^{2}} \right] \left[\frac{-b}{e} \right] \\ & \downarrow \left[\frac{b}{e} - \frac{b}{\sigma^{2}} \right] \left[\frac{-b}{e} \right] \\ & \downarrow \left[\frac{b}{e} - \frac{b}{\sigma^{2}} \right] \left[\frac{-b}{\sigma^{2}} \right] \\ & \downarrow \left[\frac{b}{e} - \frac{b}{\sigma^{2}} \right] \left[\frac{-b}{\sigma^{2}} + \frac{b}{\sigma^{2}} \right] \\ & \downarrow \left[\frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} \right] \\ & \downarrow \left[\frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} \right] \\ & \downarrow \left[\frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} \right] \\ & \downarrow \left[\frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} \right] \\ & \downarrow \left[\frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} \right] \\ & \downarrow \left[\frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} + \frac{b}{\sigma^{2}} \right] \\ & \downarrow \left[\frac{b}{\sigma^{2}} + \frac{c$$

(c) Sketch out a Gibbs sampler to draw samples from the joint distribution of σ^2 , b|Y.

Set initial values for σ^2 and b

- (1) Draw $\sigma^2 | b$ from the inverse gamma distribution in (a)
- (2) Draw $b|\sigma^2$ from a gamma distribution (b)
- Repeat (1) and (2) S times

(d) How would you pick initial values?

Since Y has mean zero, Y^2 is an estimate of the variance and could be used as in initial value for σ^2 . The model of an InvGamma distribution is b/(a+1), so with a=1 maybe $2\sigma^2$.for the initial value of b

(e) Here are 1000 samples from both parameters (code below) with Y=3, would you say the chain has converged?

(5) Assume the model Y|N, $\lambda \sim Poisson(N\lambda)$. We have been assuming that N is known and $\lambda \sim Gamma(a,b)$, in which case λ |Y ~ Gamma(Y+a,N+b). Let's say we don't know N and has prior N ~ Gamma(c,d). Below is a Gibbs sampler to approximate the posterior of N, λ |Y.

(a) Derive the full conditional distribution of λ .

It is the same as before because the usual analysis also conditions on N, so λ |Y,N \sim Gamma(Y+a,N+b).

(b) Derive the full conditional distribution of N.

The derivation is actually the same but just with the role of N and λ reversed and priors defined with (c,d) rather than (a,b), so N |Y, $\lambda \sim$ Gamma(Y+c, λ +d).

(c) Sketch out a Gibbs sampler to draw samples from the joint distribution of λ , N|Y.

Set initial values for λ and N

(1) Draw λ | Y,N ~ Gamma(Y+a,N+b)

(2) Draw N |Y, $\lambda \sim$ Gamma(Y+c, λ +d).

Repeat (1) and (2) S times

(d) How would you pick initial values?

The of Y is N λ , so maybe N = λ = sqrt(Y).

(e) Would you say the algorithm has converged?

Yes, although longer chains would be better.

(f) How would you approximate the posterior mean and 95% interval of the mean N λ ? What do you expect it to be?

Compute N λ for each draw and make a histogram of the S samples. I expect it would converge well and be centered tightly on Y.

(g) Why the last plot so strange?

Any combination of N and λ that give N λ near Y is a reasonable value, and there is not way to distinguish between say N=1 and λ =Y versus N=Y and λ =1. The joint posterior thus spans the curve N $\lambda \approx$ Y, i.e., N \approx Y/N

```
Y <- 100
a <- b <- c <- d <- 0.01
# Initial values
N <- 10
lam <- 10
# Store output
S <- 10000
samps
               <- matrix(10,S,2)
colnames(samps) <- c("N","lambda")</pre>
# Go Gibbs!
for(iter in 2:S){
         <- rgamma(1,Y+a,N+b)
 lam
 Ν
             <- rgamma(1,Y+c,lam+d)
 samps[iter,] <- c(N,lam)</pre>
}
```

```
plot(samps[,1],type="l",xlab="Iteration",ylab="N")
plot(samps[,2],type="l",xlab="Iteration",ylab="lambda")
plot(samps,xlab="N",ylab="lambda")
```

