
Chapter 7

Frequentist properties of
Bayesian methods
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Calibrated Bayes

I So far we have discussed Bayesian methods as being
separate from the frequentist approach

I However, in many cases methods with frequentist
properties are desirable

I For example, we may want a method with Type I error
control or 80% power

I You can design Bayesian methods to achieve these
frequentist properties

I In this view, Bayesian methods generate
procedures/algorithms for further study

I Often Bayesian methods are very competitive with
frequentist methods using frequentist criteria
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Outline

These notes cover Chapter 7
I Decision theory

I Bias-variance tradeoff

I Asymptotics

I Simulation studies
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Should Bayesians care about frequentist properties?

What if a Bayesian weather forecaster made a 95% prediction
interval for temperature every day for a year but the interval
only included the actual temperature 40% of the time?
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Little in Little, 2011, Stat Sci

I Bayesian statistics is strong for inference under an
assumed model, but relatively weak for the development
and assessment of models

I Frequentist statistics provides useful tools for model
development and assessment, but has weaknesses for
inference under an assumed model

I If this summary is accepted, then the natural compromise
is to use frequentist methods for model development and
assessment, and Bayesian methods for inference under a
model

I This capitalizes on the strengths of both paradigms, and is
the essence of the approach known as Calibrated Bayes
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Rubin in Little, 2011, Stat Sci

I The applied statistician should be Bayesian in principle and
calibrated to the real world in practice - appropriate
frequency calculations help to define such a tie

I Frequency calculations are useful for making Bayesian
statements scientific, scientific in the sense of capable of
being shown wrong by empirical test

I Here the technique is the calibration of Bayesian
probabilities to the frequencies of actual events
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Bayes as a procedure generator

I A Bayesian analysis produces a posterior distribution
which summarize our uncertainty after observing the data

I However, if you have to give a one-number summary as an
estimate you might pick the posterior mean

θ̂B = E(θ|Y)

I This estimator θ̂B can be evaluated along with MLE or
method of moments estimators

I Is it biased? Consistent? How does its MSE compare with
the MLE?

I These are all frequentist properties of the Bayesian
estimator
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Bayes as a procedure generator

I Similarly, if we have to give an interval estimate, we might
use the 95% posterior credible set

I In practice, this interval is motivated by the one data set we
observed

I But we could view this as a procedure for constructing an
interval and inspect its frequentist properties

I If we analyzed many datasets, each time computing a 95%
posterior interval, how many would contain the true value?

I A Bayes test is to reject Ho if Prob(Ho|Y) < c

I What are the Type I and Type II errors of this test?

I Can we pick the threshold c to control Type I error?
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Bayesian decision theory

I Before studying the frequentist properties of Bayesian
estimtors and hypothesis tests, we should determine the
“best” Bayesian method

I For example, should we take the estimator to be the
posterior mean, median, or mode?

I Defining “best” requires a scoring system

I We call this the loss function l(θ̂, θ)

I Squared error loss is l(θ̂, θ) = (θ̂ − θ)2

I Absolute loss is l(θ̂, θ) = |θ̂ − θ|
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Bayesian decision theory

I The summary of the posterior that minimizes the expected
(posterior) loss is the Bayes rule.

I Squared error loss implies we should use the posterior
mean for θ̂

I Absolute loss implies we should use the posterior median
for θ̂

I Hypothesis test requires are more complicated loss
function

I For proofs see the online derivations
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Bias/variance trade-off

I Assume Y1, ...,Yn ∼ Normal(µ, σ2)

I Estimator 1: µ̂1 = Ȳ

I Estimator 2: µ̂2 = cȲ where c = n
n+m

I µ̂2 is the posterior mean under prior µ ∼ Normal(0, σ
2

m )

I Compute the bias and variance of each estimator

I Compute the mean squared error (recall MSE =
bias2+variance)

I Which estimator is preferred?
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Properties of Bayesian estimators

Broadly speaking, the following comparisons between Bayes
and MLE hold:

I Bayesian estimators have smaller standard errors because
the prior adds information

I Bayesian estimators are biased if the prior is not centered
on the truth

I Depending on this bias/variance trade-off, Bayes
estimators may have smaller MSE than the MLE

I If the prior is weak the methods are similar

I For any prior that does not depend on the sample size, as
n increases the prior is overwhelmed by the likelihood and
the posterior approaches the MLE’s sampling distribution
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Bayesian central limit theorem

I Assumptions:
I the usual MLE conditions on the likelihood

I the prior does not depend on n and puts non-zero
probability on the true value θ0

I Then
p(θ|Y)→ N

[
θ0, I(θ0)−1

]
where I is the information matrix

I Therefore, for large datasets the posterior is approximately
normal

I Bayes methods are asymptotically unbiased
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Bayesian central limit theorem

I This implies that Bayes and MLE will be equivalent in large
samples

I What a relief!

I However, the interpretation is different

I We can use the Bayesian interpretation like Prob(H0|Y)
and Prob(3.4 < θ < 5.6)

I The Bayesian CLT gives a way to approximate (n→∞) the
posterior without MCMC

I Most still use MCMC with the hope that it better
approximates (S →∞) the exact posterior

I The CLT is useful for initial values and tuning
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Methods for studying frequentist properties

I Theoretical studies of Bayesian estimators use the same
basic approaches as frequentist methods

I Theorems and proofs (of consistency etc.) are ideal

I When the math is intractable, simulation studies are used

I In a simulation study you generate many datasets with
known parameters values

I You apply the Bayesian method to each dataset (so you
may have to run MCMC several times)

I You then see how you did, e.g., what proportion of the 95%
credible sets included the true value?

I The course website has code for a simulation study of the
Bayesian LASSO regression (BLR)
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Methods for studying frequentist properties

MSE Coverage
n p0 p1 OLS BLR OLS BLR

40 20 0 5.40 0.03 94.7 100.0
15 5 5.71 3.45 93.8 96.0

0 20 5.40 9.47 93.7 91.6
100 20 0 1.17 0.02 95.8 100.0

15 5 1.27 0.98 94.5 95.5
0 20 1.22 1.26 96.0 95.6

I n is the sample size

I p0 is the number of null covariates with βj = 0

I p1 is the number of non-null covariates with βj 6= 0
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Methods for studying frequentist properties

Conclusions:

I When the model is sparse (p1 is small), BLR is has much
smaller MSE than OLS

I When the model is dense (p0 is small), OLS has smaller
MSE, but for large n the methods are similar

I Both methods generally have reasonable coverage

I BLR’s coverage is low when n is small and the model is
dense, i.e., when its assumptions are grossly violated
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