
ST440/540 Applied Bayesian Analysis 
Lab activity for 4/14/2025 

 

Announcements 
- No in-person class on Monday.  We will have a zoom office hour to discuss the 440 exam. 

- All final projects will be a zoom recording, we will not meet in person.  I will send more info 

about this soon. 

- I will email an exam solution soon. 

 

A. HOMEWORK AND QUIZ SOLUTIONS 

 
Chapter 5, problem 6 

 

There are of course many other (simpler) options, but since we previously included village random 

effects and here we are dropping those, I chose to test this assumption.  For each village I computed 

the sample proportion, and then used the maximum and variance of these sample proportions as 

the criteria.  It turns out the model without random effects does not fit well based on these criteria, 

so we should probably add the village random effects back to the model. 

 
# Load the data 

library(geoR) 

data(gambia) 

Y <- gambia[,3] 

X <- scale(gambia[,4:8]) 

s <- gambia[,1:2] 

n <- length(Y) 

 

S <- unique(s) # Lat/long of the villages 

m <- nrow(S) 

village <- rep(0,n) 

for(j in 1:m){ 

   d             <- (s[,1]-S[j,1])^2 + (s[,2]-S[j,2])^2 

   village[d==0] <- j 

} 

 

# Fit the model in JAGS 

mod <- textConnection("model{ 

 for(i in 1:n){ 

 Y[i] ~ dbern(pi[i]) 

 logit(pi[i]) <- beta[1] + X[i,1]*beta[2]+  

                 X[i,2]*beta[3] + X[i,3]*beta[4] +  

                 X[i,4]*beta[5] + X[i,5]*beta[6] 

 } 

 for(j in 1:6){beta[j] ~ dnorm(0,0.01)} 

}") 

 



data  <- list(Y=Y,X=X,n=n) 

model <- jags.model(mod,data = data, n.chains=1,quiet=TRUE) 

update(model, 5000, progress.bar="none") 

beta  <- coda.samples(model, variable.names=c("beta"), 

                      n.iter=10000, progress.bar="none")[[1]] 

 

 

# Village sample proportions 

ybar0 <- aggregate(Y~village, FUN=mean)[,2] 

m0    <- max(ybar0) 

v0    <- var(ybar0) 

 

 

# Posterior predictive checks 

S     <- nrow(beta) 

m     <- rep(0,S) 

v     <- rep(0,S) 

 

for(i in 1:S){ 

  b     <- beta[i,] 

  eta   <- b[1] + X%*%b[2:6] 

  prob  <- exp(eta)/(1+exp(eta)) 

  y     <- rbinom(n,1,prob) 

  ybar  <- aggregate(y~village, FUN=mean)[,2] 

  m[i]    <- max(ybar) 

  v[i]    <- var(ybar) 

} 

 

hist(m,breaks=25,main="Maximum village mean",xlim=0:1) 

abline(v=m0,col=2) 

 

hist(v,breaks=25,main="Variance of the village means",xlim=c(0,v0)) 

abline(v=v0,col=2) 

 
 

 



  



Chapter 5, problem 8 

 

Again, there are many approaches here.  This is a small problem with only 10 observations, so I 

decided to use a discrepancy measure for each observation.  The measure is whether the draw from 

the prediction distribution is greater than the actual observation.  None of the means of these 

measures are close to zero or one, so by this measure the model seems to fit OK.   

 
Library(rjags) 

 

# Load the data 

Y <- c(64, 72, 55, 27, 75, 24, 28, 66, 40, 13) 

N <- c(75, 95, 63, 39, 83, 26, 41, 82, 54, 16) 

q <- c(0.845, 0.847, 0.880, 0.674, 0.909, 0.899, 0.770, 0.801, 0.802, 0.875) 

X <- log(q)-log(1-q) # X = logit(q) 

inits <- c("RW","JH","KL","LJ","SC","IT","GA","JW","AD","KD") 

 

# Fit the model in JAGS 

model_string <- textConnection("model{ 

   # Likelihood 

    for(i in 1:10){ 

      Y[i]        ~ dbinom(p[i],N[i]) 

      logit(p[i]) <- beta[1] + beta[2]*X[i] 

    } 

   # Priors 

    beta[1] ~ dnorm(0,0.01) 

    beta[2] ~ dnorm(0,0.01) 

 

   # PPD 

   for(i in 1:10){ 

      Yp[i]   ~ dbinom(p[i],N[i]) 

      D[i]    <- step(Yp[i]-Y[i]) 

   } 

}") 

 

data   <- list(Y=Y,N=N,X=X) 

model <- jags.model(model_string,data = data, n.chains=2,quiet=TRUE) 

update(model, 10000, progress.bar="none") 

samps <- coda.samples(model, variable.names=c("D"), thin=5,  

                      n.iter=20000, progress.bar="none") 

 

# Summarize the PPD 

stats <- summary(samps)$stat 

rownames(stats)<-inits 

round(stats,3) 

 

    Mean    SD Naive SE Time-series SE 

RW 0.301 0.459    0.005          0.005 

JH 0.942 0.234    0.003          0.003 

KL 0.456 0.498    0.006          0.006 

LJ 0.344 0.475    0.005          0.008 

SC 0.446 0.497    0.006          0.007 

IT 0.390 0.488    0.005          0.006 

GA 0.828 0.377    0.004          0.005 

JW 0.315 0.465    0.005          0.005 

AD 0.755 0.430    0.005          0.005 

KD 0.796 0.403    0.005          0.005 



  



B. DISCUSSION QUESTIONS 
 

(1) Discuss your exam solution with your group.  What did you do?  Did it work? 

 

(2) The following two questions are about missing data.   

 

(a) Say you’re are doing a Bayesian simple regression of Y onto X and observations are missing X, Y, 

neither or both.  Which observations can you safely discard and why? 

 

Only observations with both X and Y are informative for their correlation, so the others can be 

discarded. 

 

(b) Say you’re are doing a Bayesian multiple regression of Y onto X1 and X2 and observations are missing 

X2, Y, neither or both.  Which observations can you safely discard and why? 

 

All observations except those with only X1 have some information. If Y missing you can still use the 

observation to model X2|X1 for imputation, and if X2 is missing you can learn about the correlation 

between X1 and Y. 

 

 

  



(3) Causal inference can be viewed as a missing data problem.  Say your company has n employees.  For 

a given employee, let X be the number of years with the company prior to 2022 and A=1 if they choose 

to participate in an online training session and A=0 otherwise. For each employee we envision two 

potential outcomes 

 

- Y(0) is the 2022 performance score if they do not take the training 

- Y(1) is the 2022 performance score if they take the training 

 

Y is the observed value of the 2022 score, so either Y(0) or Y(1) depending on A, i.e., Y=Y(A). The causal 

effect is the average of Y(1)-Y(0) over the n employees 

 

Here are a few fake observations.  Plots are on the next page 

Employee X A Y(0) Y(1) 

1 3.2 0 73 NA 

2 7.1 0 61 NA 

3 1.0 1 NA 95 

 
(a) Explain why a Bayesian t-test comparing the average of Y for the employees that did and did not take 

the training in a biased estimate of the causal effect. 

 

It ignores lurking variable X. X is a lurking variable because the plots show it is correlated with by A 

and Y. 

 

(b) Looking at the scatterplot below, would you say that the training session is beneficial? 

 

It appears to improve performance for the new employees (small X). 

 

(c) How might you fill in the missing observations in the table above? 

 

Run a multiple regression with Y as the response and A and X as the predictor, and then make 

predictions with the non-observed A (i.e., 1-A) as the covariate. Or fit a regression separate for A=0 

and A=1. 

 

(d) Based on this completed table, how would you estimate the causal effect and test if it is positive? 

 

(1) For each MCMC iteration fill in the missing values as draws from the PPD 

(2) For each iteration, compute the mean of the differences in the last two columns 

(3) Compute a 95% interval for the causal effect. 

 

(e) What are the main assumptions you’re making and how might you verify them? 

 

There are no unobserved lurking variables. Also, we are assuming the stat model for imputation is 

correct (normal, linear, whatever else we assume).   

https://en.wikipedia.org/wiki/Rubin_causal_model


Plot of X and Y for the those that did (A=1) and did not (A=0) take the training.  

 
Plot of the performace scores Y by X and A. 

 
  



(4) Nontuberculous mycobacteria (NTM) occurs in the environment and is harmful to humans.  The 

mechanism by which it moves from soil and water to humans remains uncertain.  The data you are 

analyzing comes from two sources.  The first is soil samples.  For sample i, let Yi =1 if NTM is found and 

Yi=0 otherwise, si be the spatial location (lat/long) of sample and Xi be environmental covariates such as 

elevation, soil type, etc.  The second data source is human samples.  Let Zk = 1 if they have NTM and Zk = 

0 otherwise and tk be the spatial location of their residence.  Fake data is below. 

  
(a) The two data sources are collected at different locations.  Specify a model to predict the presence of 

natural NTM (s) at the locations of the residential samples (t). 

 

Logit(P(Y_i=1)) = beta0 + lat_i*beta1+long_i*beta2+elev_i*beta3… 

 

(b) Given the status (Y=0 or 1) the natural sample at the residential sample, specify a model for the 

residential data that would allow you to test whether NTM in the local environment is predictive of 

human disease.  What are the main assumptions you’re making?  Any other data you would like to 

collect? 

 

Logit(P(Z_i=1)) = alpha0 + lat_i*alpha1+long_i*alpha2+Y_i*alpha3… 

 

(c) Describe how you would fit a hierarchical model for both data sources simultaneously that would 

properly account for uncertainty in your imputation of NTM from s to t. 

 

Fit a model in JAGS that simultaneously model Y and Z, with the missing Y’s at t entered as NA. 

 

(d) How would a frequentist do (c)? 

 

(i) Plug in, i.e., take fitted values of Y as known covariates for Z. 

(ii) Do (i) a bunch of times. This is called multiple imputation. 

 

https://en.wikipedia.org/wiki/Nontuberculous_mycobacteria

