Chapters 4.3-4.5

Advanced modeling

Outline of Chapter 4

- Bayesian t-tests
- Bayesian linear regression
 - Gaussian priors
 - Jeffreys' priors
 - Shrinkage priors
- Generalized linear models
- Random effects
- Flexible linear models
 - Non-linear regression
 - Heteroskedastic errors
 - Non-Gaussian errors
 - Correlated errors

Generalized linear models

- Other forms of regression follow naturally from linear regression
- For example, for binary responses Y_i ∈ {0,1} we might use logistic regression

$$logit[Prob(Y_i = 1)] = \eta_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip}$$

- The logit link is the log-odds logit(x) = log[x/(1 x)]
- Then β_j represents the increase in the log odds of an event corresponding to a one-unit increase in covariate j
- The expit transformation expit(x) = exp(x)/[1 + exp(x)] is the inverse, and

$$\mathsf{Prob}(Y_i = 1) = \mathsf{expit}(\eta_i) \in [0, 1]$$

Logistic regression

- Bayesian logistic regression requires a prior for β
- All of the prior we have discussed for linear regression (Zellner, BLASSO, etc) apply
- Computationally the full conditional distributions are no longer conjugate and so we must use Metropolis sampling
- ► The R function MCMClogit does this efficiently
- Other GLMs (e.g., Poisson regression, probit regression) are similar to implement using Bayesian methods

Steps to selecting a Bayesian GLM

- 1. Identify the support of the response distribution
- 2. Select the likelihood by picking a parametric family of distributions with this support
- 3. Choose a link function *g* that transforms the range of parameters to the whole real line
- 4. Specify a linear model on the transformed parameters
- 5. Select priors for the regression coefficients

Example of selecting a Bayesian GLM

1. Support:
$$Y_i \in \{0, 1, 2, ...\}$$

2. Likelihood family:
$$Y_i \sim \text{Poisson}(\lambda_i)$$

3. Link:
$$g(\lambda_i) = \log(\lambda_i) \in (-\infty, \infty)$$

4. Regression model:
$$\log(\lambda_i) = \beta_0 + \sum_{j=1}^{p} X_{ij}\beta_j$$

5. Priors: $\beta_j \sim \text{Normal}(0, 10^2)$

Random effects

- Linear regression assumes that the errors are independent
- This is invalid if data are grouped
- ▶ For example, *n* classrooms each have *m* students
- It might be reasonable to assume the classrooms are independent, but the students within a class are likely dependent
- Random effects are a natural way to account for this dependence

- Say Y_{ij} is the score for student i in class j
- The random effects model is

$$Y_{ij} = \alpha_j + \varepsilon_{ij}$$

- The random effect for classroom *j* is α_i
- This is viewed as a random draw from the population,

$$\alpha_j \sim \text{Normal}(\mu, \tau^2)$$

- The population is described by μ and τ
- The random errors are ε_{ij} ~ Normal(0, σ²), independent over *i* and *j*

Conditioned on the classroom mean α_j all observations are independent

Marginalizing over the random effects gives

$$\operatorname{Cor}(Y_{ij}, Y_{uv}) = \begin{cases} 0 & \text{for } j \neq v \\ \frac{\tau^2}{\sigma^2 + \tau^2} & \text{for } j = v \end{cases}$$

 Therefore, in this model observations with the same classroom are correlated

- To complete the Bayesian model, we must specify priors for μ, σ² and τ
- A normal prior with large variance for μ is fine
- Improper priors must be used cautiously for complicated models
- A natural prior for the variances is

$$\tau^2, \sigma^2 \sim \text{InvGamma}(a, b)$$

 All full conditional distribution are conjugate and MCMC sampling is very fast

- However, under the inverse gamma prior for the variances the induced priors for *σ* and *τ* have no mass at zero
- Gelman recommends the half-Cauchy prior for the SD

$$p(\sigma) = \frac{2}{\pi(1+\sigma^2)},$$

i.e., a Student-t density with 1 df restricted to be positive

- This PDF is flat around zero and has heavy tails
- This is very easy to code in JAGS
- For large sample these give similar results, but I prefer the half-Cauchy

Prior for standard deviation

Prior for standard deviation (zoomed in around 0)

Confusion about random effects

 MCMC does not distinguish between random effects and other parameters

 For example, σ, τ, μ and α₁ are all treated as random in a Bayesian analysis

However, α_i is called a "random" effect because it represents a random draw from the fixed Normal(μ, τ²) population of classroom means

Linear mixed models

Consider the model

$$Y_{ij} = \beta_0 + X_{ij}\beta_1 + \alpha_j + \varepsilon_{ij}$$

where X_{ij} is the age of student *i* in class *j*

- The regression coefficients β₀ and β₁ apply to all students are all called "fixed effects"
- The random effect is $\alpha_i \sim \text{Normal}(0, \tau^2)$
- A linear model with both fixed and random effects is called a linear mixed model

Random slopes model

- Let Y_{ij} be the jth observation for subject i
- As an example, consider the data plotted on the next slide were Y_{ij} is the bone density for child *i* at age X_i.
- Here we might specify a different regression for each child to capture variability over the population of children:

$$Y_{ij} \sim \text{Normal}(\gamma_{0i} + X_i \gamma_{1i}, \sigma^2)$$

- $\gamma_i = (\gamma_{i0}, \gamma_{i1})^T$ controls the growth curve for child *i*
- These separate regression are tied together in the prior,

 γ_i ~ Normal(β, Σ), which borrows strength across children
- This is a linear mixed model: γ_i are random effects specific to one child and β are fixed effects common to all children

Bone height data

Age

Prior for a covariance matrix

• The random-effects covariance matrix is $\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}$

- σ_1^2 is the variance of the intercepts across children
- σ_2^2 is the variance of the slopes across children
- σ₁₂ is the covariance between the intercepts and slopes

• Prior 1:
$$\sigma_1^2, \sigma_2^2 \sim \text{InvGamma and } \rho = \frac{\sigma_{12}}{\sigma_1 \sigma_2} \sim \text{Unif}(-1, 1)$$

Prior 2: Inverse Wishart works better in higher dimensions

Inverse Wishart distribution

- The inverse Wishart distribution is the most common prior for a p × p covariance matrix
- It reduces to the inverse gamma distribution if p = 1
- Say Σ ~ InvW(κ, R) where κ > p + 1 and R is a p × p covariance matrix are hyperparameters

The PDF is

$$f(\Sigma) \propto |\Sigma|^{-(\kappa+p+1)/2} \exp\left[rac{1}{2} \operatorname{trace}(R\Sigma^{-1})
ight]$$

• The mean is $\frac{1}{\kappa - p - 1}R$

Full conditional distributions

- The hierarchical model is:
 - $Y_{ij} \sim \text{Normal}(\gamma_{0i} + X_i \gamma_{1i}, \sigma^2)$
 - $\gamma_i \sim \text{Normal}(\beta, \Sigma)$
 - *p*(β) ∝ 1
 - $\sigma^2 \sim \text{InvGamma}(a, b)$
 - $\Sigma \sim \text{InvWishart}(\kappa, R)$
- The full conditionals are all conjugate
- JAGS code is online

Bone height data - fitted values

Population mean intercept

1.0 1.5 2.0 2.5

β2

3.0

2000

1000

0

Linear models with correlated errors

- An alternative to using random effects to capture dependence is to model correlation directly
- For example, say the observations are collected at n different spatial locations
- Denote the measurement at lat/lon s_i as Y_i
- We might fit the model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

where the residual errors ε_i have spatial correlation

A common model is

$$\mathsf{Cov}(\varepsilon_i, \varepsilon_j) = \sigma^2 \exp(-d_{ij}/\phi)$$

The parameter \u03c6 controls the exponential decay of the correlation as distance between sites, dij, increases

Linear models with correlated errors

- This is staightforward (though often slow) to fit using MCMC
- The likelihood is multivariate normal

$$\mathbf{Y}|\boldsymbol{\beta}, \sigma^{2}, \rho \sim \text{Normal}\left(\mathbf{X}\boldsymbol{\beta}, \sigma^{2}\boldsymbol{\Sigma}(\boldsymbol{\phi})\right)$$

- The n × n correlation matrix Σ(φ) has (i, j) element exp(-d_{ij}/φ)
- This last piece is to set a prior for ϕ
- A uniform prior between 0 and the maximum distance between points is an option
- This type of modeling is also useful for time series data

Flexible regression modeling

- Nonparametric (NP) methods attempt to analyze the data by making the fewest number of assumptions as possible
- NP methods are generally more robust and flexible, but less powerful than correctly specified parametric models
- Most frequentist NP methods completely avoid specifying a model
- ► For example, a rank or sign test to compare two means
- NP regression methods are also popular in machine learning because it removes the need to specify a valid model

Non- and Semi-parametric modeling

- Bayesian methods need a likelihood in order to obtain a posterior, so you can't completely avoid specifying a model
- Bayesian NP (BNP) then attempts to specify a model that is so flexible that it almost certainly captures the true model
- One definition of the BNP model is one that has infinitely-many parameters
- In some cases, NP models are difficult conceptually and computationally, and so semiparametric models with a large but finite number of parameters are useful approximations

Parametric simple linear regression

Consider the classic parametric model:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
 where $\varepsilon_i \sim N(0, \sigma^2)$.

Assumptions:

- **1.** ε_i are independent
- **2.** ε_i are Gaussian
- **3**. The mean of Y_i is linear in X.

4. The residual distribution does not depend on X

Alternatives:

- 1. Parametric alternatives such as a time series model.
- **2**. Let $\varepsilon_i \sim F$, and place a prior on the distribution *F*.
- 3. Let E(Y|X) = g(X) and put a prior on the function g.
- **4**. Heteroskedastic regression $Var(\varepsilon_i) = exp(\alpha_0 + \alpha_1 X)$.

In 2-4 we are placing priors on functions, not parameters.

Nonparametric regression

- Let's relax the assumption of linearity in the mean.
- ► The mean is g(X), where g is some function that relates X to E(Y|X).

Parametric non-linear regressions models include:

- 1. Quadratic: $g(X) = \beta_0 + \beta_1 X + \beta_2 X^2$
- 2. Exponential: $g(X) = \exp(\beta_0 + \beta_1 X)$

3. Logistic:
$$g(X) = \beta_0 + \beta_1 \frac{\exp[\beta_2 + \beta_3 X]}{1 + \exp[\beta_2 + \beta_3 X]}$$
.

NP regression puts a prior on the curve g(X), rather than the parameters β₁,..., β_p that determine the parametric model.

Semiparametric regression

 Semiparametric regression approximates the function g using a finite basis expansion

$$g(X) = \sum_{j=1}^{J} B_j(X) \beta_j$$

where $B_j(X)$ are known basis functions and β_j are unknown coefficients that determine the shape of *g*

- Example: polynomial regression takes $B_j(X) = X^j$
- Example: the cubic spline basis functions are

$$B_j(X) = (X - v_j)^3_+$$

where v_i are fixed knots that span the range of X

Semiparametric regression

- Many other expansions exist: wavelets; Fourier, neural networks, regression trees, etc
- Fact: A basis expansion of J terms can match the true curve g at any J points X₁,..., X_J
- So increasing *J* gives an arbitrarily flexible model
- This is allows the machine to learn patterns in the data without prior knowledge
- It also makes interpreting the results very difficult

Model fitting

- The model is Y_i ~ N (B^T_iβ, σ²), where β_j ~ N(0, τ²) and B_i is comprised of the known basis functions B_j(X_i)
- Therefore, the model is usual linear regression model and is straightforward to fit using MCMC
- Bayesian methods are excellent for quantifying uncertainty in the fitted model and predictions

• How to pick *J*? Can we J > n?