Chapters 4.3-4.5

Advanced modeling

Outline of Chapter 4

- Bayesian t-tests
- Bayesian linear regression
- Gaussian priors
- Jeffreys' priors
- Shrinkage priors
- Generalized linear models
- Random effects
- Flexible linear models
- Non-linear regression
- Heteroskedastic errors
- Non-Gaussian errors
- Correlated errors

Generalized linear models

- Other forms of regression follow naturally from linear regression
- For example, for binary responses $Y_{i} \in\{0,1\}$ we might use logistic regression

$$
\operatorname{logit}\left[\operatorname{Prob}\left(Y_{i}=1\right)\right]=\eta_{i}=\beta_{0}+\beta_{1} X_{i 1}+\ldots+\beta_{p} X_{i p}
$$

- The logit link is the log-odds $\operatorname{logit}(x)=\log [x /(1-x)]$
- Then β_{j} represents the increase in the log odds of an event corresponding to a one-unit increase in covariate j
- The expit transformation $\operatorname{expit}(x)=\exp (x) /[1+\exp (x)]$ is the inverse, and

$$
\operatorname{Prob}\left(Y_{i}=1\right)=\operatorname{expit}\left(\eta_{i}\right) \in[0,1]
$$

Logistic regression

- Bayesian logistic regression requires a prior for $\boldsymbol{\beta}$
- All of the prior we have discussed for linear regression (Zellner, BLASSO, etc) apply
- Computationally the full conditional distributions are no longer conjugate and so we must use Metropolis sampling
- The R function MCMClogit does this efficiently
- Other GLMs (e.g., Poisson regression, probit regression) are similar to implement using Bayesian methods

Steps to selecting a Bayesian GLM

1. Identify the support of the response distribution
2. Select the likelihood by picking a parametric family of distributions with this support
3. Choose a link function g that transforms the range of parameters to the whole real line
4. Specify a linear model on the transformed parameters
5. Select priors for the regression coefficients

Example of selecting a Bayesian GLM

1. Support: $Y_{i} \in\{0,1,2, \ldots\}$
2. Likelihood family: $Y_{i} \sim \operatorname{Poisson}\left(\lambda_{i}\right)$
3. Link: $g\left(\lambda_{i}\right)=\log \left(\lambda_{i}\right) \in(-\infty, \infty)$
4. Regression model: $\log \left(\lambda_{i}\right)=\beta_{0}+\sum_{j=1}^{p} X_{i j} \beta_{j}$
5. Priors: $\beta_{j} \sim \operatorname{Normal}\left(0,10^{2}\right)$

Random effects

- Linear regression assumes that the errors are independent
- This is invalid if data are grouped
- For example, n classrooms each have m students
- It might be reasonable to assume the classrooms are independent, but the students within a class are likely dependent
- Random effects are a natural way to account for this dependence

One-way random effects model

- Say $Y_{i j}$ is the score for student i in class j
- The random effects model is

$$
Y_{i j}=\alpha_{j}+\varepsilon_{i j}
$$

- The random effect for classroom j is α_{j}
- This is viewed as a random draw from the population,

$$
\alpha_{j} \sim \operatorname{Normal}\left(\mu, \tau^{2}\right)
$$

- The population is described by μ and τ
- The random errors are $\varepsilon_{i j} \sim \operatorname{Normal}\left(0, \sigma^{2}\right)$, independent over i and j

One-way random effects model

- Conditioned on the classroom mean α_{j} all observations are independent
- Marginalizing over the random effects gives

$$
\operatorname{Cor}\left(Y_{i j}, Y_{u v}\right)= \begin{cases}0 & \text { for } j \neq v \\ \frac{\tau^{2}}{\sigma^{2}+\tau^{2}} & \text { for } j=v\end{cases}
$$

- Therefore, in this model observations with the same classroom are correlated

One-way random effects model

- To complete the Bayesian model, we must specify priors for μ, σ^{2} and τ
- A normal prior with large variance for μ is fine
- Improper priors must be used cautiously for complicated models
- A natural prior for the variances is

$$
\tau^{2}, \sigma^{2} \sim \operatorname{InvGamma}(a, b)
$$

- All full conditional distribution are conjugate and MCMC sampling is very fast

One-way random effects model

- However, under the inverse gamma prior for the variances the induced priors for σ and τ have no mass at zero
- Gelman recommends the half-Cauchy prior for the SD

$$
p(\sigma)=\frac{2}{\pi\left(1+\sigma^{2}\right)}
$$

i.e., a Student-t density with 1 df restricted to be positive

- This PDF is flat around zero and has heavy tails
- This is very easy to code in JAGS
- For large sample these give similar results, but I prefer the half-Cauchy

Prior for standard deviation

Prior for standard deviation (zoomed in around 0)

Confusion about random effects

- MCMC does not distinguish between random effects and other parameters
- For example, σ, τ, μ and α_{1} are all treated as random in a Bayesian analysis
- However, α_{i} is called a "random" effect because it represents a random draw from the fixed $\operatorname{Normal}\left(\mu, \tau^{2}\right)$ population of classroom means

Linear mixed models

- Consider the model

$$
Y_{i j}=\beta_{0}+X_{i j} \beta_{1}+\alpha_{j}+\varepsilon_{i j}
$$

where $X_{i j}$ is the age of student i in class j

- The regression coefficients β_{0} and β_{1} apply to all students are all called "fixed effects"
- The random effect is $\alpha_{j} \sim \operatorname{Normal}\left(0, \tau^{2}\right)$
- A linear model with both fixed and random effects is called a linear mixed model

Random slopes model

- Let $Y_{i j}$ be the $j^{\text {th }}$ observation for subject i
- As an example, consider the data plotted on the next slide were $Y_{i j}$ is the bone density for child i at age X_{j}.
- Here we might specify a different regression for each child to capture variability over the population of children:

$$
Y_{i j} \sim \operatorname{Normal}\left(\gamma_{0 i}+X_{i} \gamma_{1 i}, \sigma^{2}\right)
$$

- $\gamma_{i}=\left(\gamma_{i 0}, \gamma_{i 1}\right)^{T}$ controls the growth curve for child i
- These separate regression are tied together in the prior, $\gamma_{i} \sim \operatorname{Normal}(\beta, \Sigma)$, which borrows strength across children
- This is a linear mixed model: γ_{i} are random effects specific to one child and β are fixed effects common to all children

Bone height data

Prior for a covariance matrix

- The random-effects covariance matrix is $\Sigma=\left[\begin{array}{cc}\sigma_{1}^{2} & \sigma_{12} \\ \sigma_{12} & \sigma_{2}^{2}\end{array}\right]$
- σ_{1}^{2} is the variance of the intercepts across children
- σ_{2}^{2} is the variance of the slopes across children
- σ_{12} is the covariance between the intercepts and slopes
- Prior 1: $\sigma_{1}^{2}, \sigma_{2}^{2} \sim \operatorname{InvGamma}$ and $\rho=\frac{\sigma_{12}}{\sigma_{1} \sigma_{2}} \sim \operatorname{Unif}(-1,1)$
- Prior 2: Inverse Wishart works better in higher dimensions

Inverse Wishart distribution

- The inverse Wishart distribution is the most common prior for a $p \times p$ covariance matrix
- It reduces to the inverse gamma distribution if $p=1$
- Say $\Sigma \sim \operatorname{InvW}(\kappa, R)$ where $\kappa>p+1$ and R is a $p \times p$ covariance matrix are hyperparameters
- The PDF is

$$
f(\Sigma) \propto|\Sigma|^{-(\kappa+p+1) / 2} \exp \left[\frac{1}{2} \operatorname{trace}\left(R \Sigma^{-1}\right)\right]
$$

- The mean is $\frac{1}{\kappa-p-1} R$

Full conditional distributions

- The hierarchical model is:
- $Y_{i j} \sim \operatorname{Normal}\left(\gamma_{0 i}+X_{i} \gamma_{1 i}, \sigma^{2}\right)$
- $\gamma_{i} \sim \operatorname{Normal}(\boldsymbol{\beta}, \Sigma)$
- $p(\boldsymbol{\beta}) \propto 1$
- $\sigma^{2} \sim \operatorname{InvGamma}(a, b)$
- $\Sigma \sim \operatorname{InvWishart}(\kappa, R)$
- The full conditionals are all conjugate
- JAGS code is online

Bone height data - fitted values

Subject 1

Subject 4

Population mean intercept

β_{1}

Subject 2

Subject 5

Population mean slope

β_{2}

Subject 3

Subject 6

Corr(gamma[1],gamma[2])

Linear models with correlated errors

- An alternative to using random effects to capture dependence is to model correlation directly
- For example, say the observations are collected at n different spatial locations
- Denote the measurement at lat/lon s_{i} as Y_{i}
- We might fit the model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

where the residual errors ε_{i} have spatial correlation

- A common model is

$$
\operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=\sigma^{2} \exp \left(-d_{i j} / \phi\right)
$$

- The parameter ϕ controls the exponential decay of the correlation as distance between sites, $d_{i j}$, increases

Linear models with correlated errors

- This is staightforward (though often slow) to fit using MCMC
- The likelihood is multivariate normal

$$
\mathbf{Y} \mid \boldsymbol{\beta}, \sigma^{2}, \rho \sim \operatorname{Normal}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \Sigma(\phi)\right)
$$

- The $n \times n$ correlation matrix $\Sigma(\phi)$ has (i, j) element $\exp \left(-d_{i j} / \phi\right)$
- This last piece is to set a prior for ϕ
- A uniform prior between 0 and the maximum distance between points is an option
- This type of modeling is also useful for time series data

Flexible regression modeling

- Nonparametric (NP) methods attempt to analyze the data by making the fewest number of assumptions as possible
- NP methods are generally more robust and flexible, but less powerful than correctly specified parametric models
- Most frequentist NP methods completely avoid specifying a model
- For example, a rank or sign test to compare two means
- NP regression methods are also popular in machine learning because it removes the need to specify a valid model

Non- and Semi-parametric modeling

- Bayesian methods need a likelihood in order to obtain a posterior, so you can't completely avoid specifying a model
- Bayesian NP (BNP) then attempts to specify a model that is so flexible that it almost certainly captures the true model
- One definition of the BNP model is one that has infinitely-many parameters
- In some cases, NP models are difficult conceptually and computationally, and so semiparametric models with a large but finite number of parameters are useful approximations

Parametric simple linear regression

Consider the classic parametric model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i} \text { where } \varepsilon_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right) .
$$

Assumptions:

1. ε_{i} are independent
2. ε_{i} are Gaussian
3. The mean of Y_{i} is linear in X.
4. The residual distribution does not depend on X

Alternatives:

1. Parametric alternatives such as a time series model.
2. Let $\varepsilon_{i} \sim F$, and place a prior on the distribution F.
3. Let $E(Y \mid X)=g(X)$ and put a prior on the function g.
4. Heteroskedastic regression $\operatorname{Var}\left(\varepsilon_{i}\right)=\exp \left(\alpha_{0}+\alpha_{1} X\right)$.

In 2-4 we are placing priors on functions, not parameters.

Nonparametric regression

- Let's relax the assumption of linearity in the mean.
- The mean is $g(X)$, where g is some function that relates X to $\mathrm{E}(Y \mid X)$.
- Parametric non-linear regressions models include:

1. Quadratic: $g(X)=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}$
2. Exponential: $g(X)=\exp \left(\beta_{0}+\beta_{1} X\right)$
3. Logistic: $g(X)=\beta_{0}+\beta_{1} \frac{\exp \left[\beta_{2}+\beta_{3} X\right]}{1+\exp \left[\beta_{2}+\beta_{3} X\right]}$.

- NP regression puts a prior on the curve $g(X)$, rather than the parameters $\beta_{1}, \ldots, \beta_{p}$ that determine the parametric model.

Semiparametric regression

- Semiparametric regression approximates the function g using a finite basis expansion

$$
g(X)=\sum_{j=1}^{J} B_{j}(X) \beta_{j}
$$

where $B_{j}(X)$ are known basis functions and β_{j} are unknown coefficients that determine the shape of g

- Example: polynomial regression takes $B_{j}(X)=X^{j}$
- Example: the cubic spline basis functions are

$$
B_{j}(X)=\left(X-v_{j}\right)_{+}^{3}
$$

where v_{j} are fixed knots that span the range of X

Semiparametric regression

- Many other expansions exist: wavelets; Fourier, neural networks, regression trees, etc
- Fact: A basis expansion of J terms can match the true curve g at any J points X_{1}, \ldots, X_{J}
- So increasing J gives an arbitrarily flexible model
- This is allows the machine to learn patterns in the data without prior knowledge
- It also makes interpreting the results very difficult

Model fitting

- The model is $Y_{i} \sim \mathrm{~N}\left(B_{i}^{T} \boldsymbol{\beta}, \sigma^{2}\right)$, where $\beta_{j} \sim \mathrm{~N}\left(0, \tau^{2}\right)$ and B_{i} is comprised of the known basis functions $B_{j}\left(X_{i}\right)$
- Therefore, the model is usual linear regression model and is straightforward to fit using MCMC
- Bayesian methods are excellent for quantifying uncertainty in the fitted model and predictions
- How to pick J ? Can we $J>n$?

