
Chapters 4.3–4.5

Advanced modeling
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Outline of Chapter 4

I Bayesian t-tests
I Bayesian linear regression

I Gaussian priors
I Jeffreys’ priors
I Shrinkage priors

I Generalized linear models
I Random effects
I Flexible linear models

I Non-linear regression
I Heteroskedastic errors
I Non-Gaussian errors
I Correlated errors
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Generalized linear models

I Other forms of regression follow naturally from linear
regression

I For example, for binary responses Yi ∈ {0,1} we might
use logistic regression

logit[Prob(Yi = 1)] = ηi = β0 + β1Xi1 + ...+ βpXip

I The logit link is the log-odds logit(x) = log[x/(1− x)]

I Then βj represents the increase in the log odds of an event
corresponding to a one-unit increase in covariate j

I The expit transformation expit(x) = exp(x)/[1 + exp(x)] is
the inverse, and

Prob(Yi = 1) = expit(ηi) ∈ [0,1]
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Logistic regression

I Bayesian logistic regression requires a prior for β

I All of the prior we have discussed for linear regression
(Zellner, BLASSO, etc) apply

I Computationally the full conditional distributions are no
longer conjugate and so we must use Metropolis sampling

I The R function MCMClogit does this efficiently

I Other GLMs (e.g., Poisson regression, probit regression )
are similar to implement using Bayesian methods
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Steps to selecting a Bayesian GLM

1. Identify the support of the response distribution

2. Select the likelihood by picking a parametric family of
distributions with this support

3. Choose a link function g that transforms the range of
parameters to the whole real line

4. Specify a linear model on the transformed parameters

5. Select priors for the regression coefficients
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Example of selecting a Bayesian GLM

1. Support: Yi ∈ {0,1,2, ...}

2. Likelihood family: Yi ∼ Poisson(λi)

3. Link: g(λi) = log(λi) ∈ (−∞,∞)

4. Regression model: log(λi) = β0 +
∑p

j=1 Xijβj

5. Priors: βj ∼ Normal(0,102)
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Random effects

I Linear regression assumes that the errors are independent

I This is invalid if data are grouped

I For example, n classrooms each have m students

I It might be reasonable to assume the classrooms are
independent, but the students within a class are likely
dependent

I Random effects are a natural way to account for this
dependence
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One-way random effects model

I Say Yij is the score for student i in class j

I The random effects model is

Yij = αj + εij

I The random effect for classroom j is αj

I This is viewed as a random draw from the population,

αj ∼ Normal(µ, τ2)

I The population is described by µ and τ

I The random errors are εij ∼ Normal(0, σ2), independent
over i and j
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One-way random effects model

I Conditioned on the classroom mean αj all observations are
independent

I Marginalizing over the random effects gives

Cor(Yij ,Yuv ) =

{
0 for j 6= v
τ2

σ2+τ2 for j = v

I Therefore, in this model observations with the same
classroom are correlated
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One-way random effects model

I To complete the Bayesian model, we must specify priors
for µ, σ2 and τ

I A normal prior with large variance for µ is fine

I Improper priors must be used cautiously for complicated
models

I A natural prior for the variances is

τ2, σ2 ∼ InvGamma(a,b)

I All full conditional distribution are conjugate and MCMC
sampling is very fast
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One-way random effects model

I However, under the inverse gamma prior for the variances
the induced priors for σ and τ have no mass at zero

I Gelman recommends the half-Cauchy prior for the SD

p(σ) =
2

π(1 + σ2)
,

i.e., a Student-t density with 1 df restricted to be positive

I This PDF is flat around zero and has heavy tails

I This is very easy to code in JAGS

I For large sample these give similar results, but I prefer the
half-Cauchy

11 / 30



Prior for standard deviation
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Prior for standard deviation (zoomed in around 0)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

σ

P
rio

r 
de

ns
ity

Half−Cauchy
InvGamma, a=1
InvGamma, a=0.5
InvGamma, a=0.1

13 / 30



Confusion about random effects

I MCMC does not distinguish between random effects and
other parameters

I For example, σ, τ , µ and α1 are all treated as random in a
Bayesian analysis

I However, αi is called a “random” effect because it
represents a random draw from the fixed Normal(µ, τ2)
population of classroom means
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Linear mixed models

I Consider the model

Yij = β0 + Xijβ1 + αj + εij

where Xij is the age of student i in class j

I The regression coefficients β0 and β1 apply to all students
are all called “fixed effects”

I The random effect is αj ∼ Normal(0, τ2)

I A linear model with both fixed and random effects is called
a linear mixed model
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Random slopes model

I Let Yij be the j th observation for subject i

I As an example, consider the data plotted on the next slide
were Yij is the bone density for child i at age Xj .

I Here we might specify a different regression for each child
to capture variability over the population of children:

Yij ∼ Normal(γ0i + Xiγ1i , σ
2)

I γ i = (γi0, γi1)T controls the growth curve for child i

I These separate regression are tied together in the prior,
γ i ∼ Normal(β,Σ), which borrows strength across children

I This is a linear mixed model: γ i are random effects specific
to one child and β are fixed effects common to all children
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Bone height data
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Prior for a covariance matrix

I The random-effects covariance matrix is Σ =

[
σ2

1 σ12
σ12 σ2

2

]

I σ2
1 is the variance of the intercepts across children

I σ2
2 is the variance of the slopes across children

I σ12 is the covariance between the intercepts and slopes

I Prior 1: σ2
1, σ

2
2 ∼ InvGamma and ρ = σ12

σ1σ2
∼ Unif(−1,1)

I Prior 2: Inverse Wishart works better in higher dimensions
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Inverse Wishart distribution

I The inverse Wishart distribution is the most common prior
for a p × p covariance matrix

I It reduces to the inverse gamma distribution if p = 1

I Say Σ ∼ InvW(κ,R) where κ > p + 1 and R is a p × p
covariance matrix are hyperparameters

I The PDF is

f (Σ) ∝ |Σ|−(κ+p+1)/2 exp

[
1
2

trace(RΣ−1)

]
I The mean is 1

κ−p−1R
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Full conditional distributions

I The hierarchical model is:
I Yij ∼ Normal(γ0i + Xiγ1i , σ

2)

I γ i ∼ Normal(β,Σ)

I p(β) ∝ 1

I σ2 ∼ InvGamma(a,b)

I Σ ∼ InvWishart(κ,R)

I The full conditionals are all conjugate

I JAGS code is online
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Bone height data - fitted values
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Linear models with correlated errors
I An alternative to using random effects to capture

dependence is to model correlation directly
I For example, say the observations are collected at n

different spatial locations
I Denote the measurement at lat/lon si as Yi

I We might fit the model

Yi = β0 + β1Xi + εi

where the residual errors εi have spatial correlation
I A common model is

Cov(εi , εj) = σ2 exp(−dij/φ)

I The parameter φ controls the exponential decay of the
correlation as distance between sites, dij , increases
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Linear models with correlated errors

I This is staightforward (though often slow) to fit using
MCMC

I The likelihood is multivariate normal

Y|β, σ2, ρ ∼ Normal
(

Xβ, σ2Σ(φ)
)

I The n × n correlation matrix Σ(φ) has (i , j) element
exp(−dij/φ)

I This last piece is to set a prior for φ

I A uniform prior between 0 and the maximum distance
between points is an option

I This type of modeling is also useful for time series data
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Flexible regression modeling

I Nonparametric (NP) methods attempt to analyze the data
by making the fewest number of assumptions as possible

I NP methods are generally more robust and flexible, but
less powerful than correctly specified parametric models

I Most frequentist NP methods completely avoid specifying a
model

I For example, a rank or sign test to compare two means

I NP regression methods are also popular in machine
learning because it removes the need to specify a valid
model
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Non- and Semi-parametric modeling

I Bayesian methods need a likelihood in order to obtain a
posterior, so you can’t completely avoid specifying a model

I Bayesian NP (BNP) then attempts to specify a model that
is so flexible that it almost certainly captures the true model

I One definition of the BNP model is one that has
infinitely-many parameters

I In some cases, NP models are difficult conceptually and
computationally, and so semiparametric models with a
large but finite number of parameters are useful
approximations
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Parametric simple linear regression
Consider the classic parametric model:

Yi = β0 + β1Xi + εi where εi ∼ N(0, σ2).

Assumptions:
1. εi are independent

2. εi are Gaussian

3. The mean of Yi is linear in X .

4. The residual distribution does not depend on X
Alternatives:

1. Parametric alternatives such as a time series model.

2. Let εi ∼ F , and place a prior on the distribution F .

3. Let E(Y |X ) = g(X ) and put a prior on the function g.

4. Heteroskedastic regression Var(εi) = exp(α0 + α1X ).
In 2-4 we are placing priors on functions, not parameters.
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Nonparametric regression

I Let’s relax the assumption of linearity in the mean.

I The mean is g(X ), where g is some function that relates X
to E(Y |X ).

I Parametric non-linear regressions models include:
1. Quadratic: g(X ) = β0 + β1X + β2X 2

2. Exponential: g(X ) = exp(β0 + β1X )

3. Logistic: g(X ) = β0 + β1
exp[β2+β3X ]

1+exp[β2+β3X ] .

I NP regression puts a prior on the curve g(X ), rather than
the parameters β1, ..., βp that determine the parametric
model.
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Semiparametric regression

I Semiparametric regression approximates the function g
using a finite basis expansion

g(X ) =
J∑

j=1

Bj(X )βj

where Bj(X ) are known basis functions and βj are
unknown coefficients that determine the shape of g

I Example: polynomial regression takes Bj(X ) = X j

I Example: the cubic spline basis functions are

Bj(X ) = (X − vj)
3
+

where vj are fixed knots that span the range of X
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Semiparametric regression

I Many other expansions exist: wavelets; Fourier, neural
networks, regression trees, etc

I Fact: A basis expansion of J terms can match the true
curve g at any J points X1, ...,XJ

I So increasing J gives an arbitrarily flexible model

I This is allows the machine to learn patterns in the data
without prior knowledge

I It also makes interpreting the results very difficult
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Model fitting

I The model is Yi ∼ N
(
BT

i β, σ
2), where βj ∼ N(0, τ2) and Bi

is comprised of the known basis functions Bj(Xi)

I Therefore, the model is usual linear regression model and
is straightforward to fit using MCMC

I Bayesian methods are excellent for quantifying uncertainty
in the fitted model and predictions

I How to pick J? Can we J > n?
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