
ST440/540 Applied Bayesian Analysis 
Lab activity for 3/24/2025 

 

Announcements 
 

- Quiz 10 due Friday 3/28 

- Final homework assignment due 4/4 

 

A. STUDENT QUESTIONS 

 
(1) For JAGS, there seems to be some functions we can use in our text string that aren't on base R (for 

example, ddexp() being used for a double exponential prior). Is there a way for us to know about these 

functions, or should we just know them from the code examples you have posted and the textbook? 

 

Yeah, it’s confusing because JAGS is so close to R but there are a few exceptions.  I have to check the 

user’s manual 

 

https://people.stat.sc.edu/hansont/stat740/jags_user_manual.pdf 

 

Chapters 6 and 7 have all the functions and distributions. 

 

(2) On Assignment #5, Problem 4.2 a, b, c,  centering and scaling of the Boston data makes the results 

come out perfect.  Can you please explain why? 

 

In general, centering and scaling is important when considering prior distributions.  In regression, 

beta is the increase in the mean of Y if X increases by 1.  So beta ~ N(0,1) implies something 

completely different X is between 0 and 1 (an increase of 1 is huge) versus X between 0 and a million 

(an increase of one is nothing).  Therefore, if X1 and X2 have very different scales, then using the 

same prior can unintentionally favor one over the other. 

 

(3) Slide 5 of Advanced Modeling Step 3 "Choose a link function g that transforms the range of 

parameters to the whole real line."  Is it always the case that the transformation has to be to the whole 

real line?  That is the way I read it but I don't believe this is necessary for all possible cases. 

 

I guess nothing is “necessary”, but if you want to model the transformed parameters as linear its 

range should be the whole real line because the line a+bX spans (-inf,inf) as X goes from (-inf,inf). 

 

(4) In the context of Bayesian statistics, what are the advantages and disadvantages of using a mixed 

model with random effects versus modeling correlation directly? Can you give examples where each 

type of model is used? 

 

https://people.stat.sc.edu/hansont/stat740/jags_user_manual.pdf


In some cases, like spatial correlation, there is no simple random effects representation to express 

the model so directly modeling correlation is the only way to proceed.  Where you can write the 

model equivalently using random effects or correlation, the deciding factor is computation since the 

output should be the same.  Generally, random effects are easier to deal with because they don’t 

involve dealing with large covariance matrices.  But there are certainly counterexamples. 

 

B. HOMEWORK AND QUIZ SOLUTIONS 

 
Q9: The horseshoe prior gets its name from the shape of the Beta(1/2,1/2) distribution on the shrinkage 

parameter.  Why is this shape desirable for high-dimensional regression? 

 

In the model with Y ~ N(b,1) and b ~ N(0,tau^2), the posterior mean of b is (1-k)Y, so k controls the 

amount of skrinkage.  The HS prior for tau puts a beta(1/2,1/2) prior on k which is shaped like a 

horseshoe.  This is good for high-dimensional regression because it put prior probability on 

complete shrinkage for irrelevant variables and no shrinkage on relevant variables. 

 

Chapter 4, Problem 2 

 
(2a)  
library(MASS) 

data(Boston) 

X  <- scale(Boston[,1:13]) 

Y  <- as.vector(scale(Boston[,14])) 

 

library(rjags) 

data <- list(n=length(Y),p=ncol(X),X=X,Y=Y) 

 

model_string <- textConnection("model{ 

 

   # Likelihood 

   for(i in 1:n){ 

     Y[i]   ~ dnorm(mu[i],tau) 

     mu[i] <- alpha + inprod(X[i,],beta[]) 

   } 

   for(j in 1:p){ 

      beta[j] ~ dnorm(0,0.01) 

   } 

   alpha ~  dnorm(0, 0.01) 

   tau   ~  dgamma(0.1, 0.1) 

 }") 

 

model <- jags.model(model_string,data = data, n.chains=2,quiet=TRUE) 

update(model, 10000, progress.bar="none") 

params  <- c("beta") 

samples <- coda.samples(model,  

           variable.names=params,  

            n.iter=10000, progress.bar="none") 

 plot(samples) 



 
 

 

 

   sum1           <- summary(samples)$stat[,1:2] 

rownames(sum1) <- colnames(X) 

round(sum1,3) 

##           Mean    SD 

## crim    -0.101 0.031 

## zn       0.118 0.035 

## indus    0.013 0.046 

## chas     0.074 0.024 

## nox     -0.223 0.048 

## rm       0.292 0.032 

## age      0.002 0.041 



## dis     -0.338 0.046 

## rad      0.287 0.063 

## tax     -0.222 0.069 

## ptratio -0.224 0.031 

## black    0.093 0.027 

## lstat   -0.407 0.040 

 

Convergence looks great. All covariates except age and indus have 95% intervals that exclude zero. 

 

(2b) 

 
sum2 <- summary(lm(Y~X))$coef[,1:2] 

round(sum2,3) 

##             Estimate Std. Error 

## (Intercept)    0.000      0.023 

## Xcrim         -0.101      0.031 

## Xzn            0.118      0.035 

## Xindus         0.015      0.046 

## Xchas          0.074      0.024 

## Xnox          -0.224      0.048 

## Xrm            0.291      0.032 

## Xage           0.002      0.040 

## Xdis          -0.338      0.046 

## Xrad           0.290      0.063 

## Xtax          -0.226      0.069 

## Xptratio      -0.224      0.031 

## Xblack         0.092      0.027 

## Xlstat        -0.407      0.039 

 

The results are nearly identical to the Bayesian analysis with uninformative priors, as expected. 

 

 

(2c) 

 
model_string <- textConnection("model{ 

 

   # Likelihood 

   for(i in 1:n){ 

     Y[i]   ~ dnorm(mu[i],tau) 

     mu[i] <- alpha + inprod(X[i,],beta[]) 

   } 

   for(j in 1:p){ 

      beta[j] ~ ddexp(0,taub) 

   } 

   alpha ~  dnorm(0, 0.01) 

   tau   ~  dgamma(0.1, 0.1) 

   taub  ~  dgamma(0.1, 0.1) 

}") 

 

model <- jags.model(model_string,data = data, n.chains=2,quiet=TRUE) 

update(model, 10000, progress.bar="none") 

params  <- c("beta") 



samples <- coda.samples(model,  

           variable.names=params,  

           n.iter=10000, progress.bar="none") 

sum3     <- summary(samples)$stat[,1:2] 

rownames(sum3) <- colnames(X) 

round(sum3,3) 

##           Mean    SD 

## crim    -0.093 0.031 

## zn       0.106 0.035 

## indus   -0.001 0.042 

## chas     0.074 0.024 

## nox     -0.204 0.047 

## rm       0.295 0.032 

## age     -0.002 0.037 

## dis     -0.322 0.045 

## rad      0.244 0.065 

## tax     -0.184 0.069 

## ptratio -0.218 0.031 

## black    0.090 0.027 

## lstat   -0.406 0.039 

 

In this case with n >> p the results of the Bayesian lasso are similar to those from the analysis with 

uninformative priors. 

 

(2d) 

 
model_string <- textConnection("model{ 

   # Likelihood 

   for(i in 1:500){ 

     Y[i]   ~ dnorm(mu[i],tau) 

     mu[i] <- alpha + inprod(X[i,],beta[]) 

   } 

   for(j in 1:p){ 

      beta[j] ~ dnorm(0,0.01) 

   } 

   alpha ~  dnorm(0, 0.01) 

   tau   ~  dgamma(0.1, 0.1) 

   for(i in 501:n){ 

     Yp[i]   ~ dnorm(mup[i],tau) 

     mup[i] <- alpha + inprod(X[i,],beta[]) 

   } 

}") 

 

model <- jags.model(model_string,data = data, n.chains=2,quiet=TRUE) 

update(model, 10000, progress.bar="none") 

params  <- c("Yp") 

samples <- coda.samples(model,  

           variable.names=params,  

           n.iter=10000, progress.bar="none") 

Yp     <- rbind(samples[[1]],samples[[2]]) 

boxplot(Yp,outline=FALSE,xlab="Observation",ylab="PPD") 

lines(Y[501:506],lwd=2,col=2) 



 
The observed values all fall in center of the PPD. 

 



C. DISCUSSION QUESTIONS 

 
(1) Let Xi ≥ 0 be the level of PFAS (“forever chemicals”) in public water system (PWS) i.  To perform a 

comprehensive study of the effects of PFAS, we gather the following health outcomes for the residents 

in each PWS.  Write a generalized linear model for each response variable. 

(a) Yi is 1 if the PWS has a higher-than-average thyroid cancer rate, and 0 otherwise 

Logistic regression: Yi ~ Binomial(1,pi) with logit(pi) = a + bXi.  

(b) Yi is the proportion of residents in the PWS with high blood pressure 

The easiest model is linear regression: log(Yi) ~ Normal(a + bXi.,σ2).  You’d have to plot the data and 

verify normality holds. Since Y is a proportion your could also model it as a beta distribution. 

(c) Yi is the number of residents with thyroid cancer 

Poisson regression: Yi ~ Poisson(Niλi) where Ni is the population of PWS I and log(λi) = a + bXi 

  



(2) A study randomized 100 subjects to either treatment or control groups.  The treatment group will 

take a high-intensity spinning class each morning and the control group will continue their normal 

routine.  Each patient will have their blood pressure measured at baseline and once a week for each of 

the four weeks of the study.  The goal is to determine whether spinning reduces blood pressure. 

(a) Describe a model and priors for these data 

As with all of these questions, there is no single right answer here. In reality, you would first explore 

the data a bit, then try and compare a few models before settling on a final analysis. Below are just 

some ideas to get started. Let Yij be the BP for subject i at time j = 0, 1, 2, 3, 4. We could allow each 

subject to have a separate linear regression, so 

 

Yij = ai + bi*j + eij 

 

The random intercept for subject i has distribution ai ~ N(m,sa
2). The slope depends on treatment 

group xi = 1 if spin, xi=0 if not, so bi ~ N(c+d*xi,sb
2). To complete the Bayesian model we could pick 

conjugate priors m,c,d ~ N(0,100) and sa
2,sb

2 ~ InvGamma(0.1,0.1). 

 

 (b) How would you summarize the results? 

The assumption made here is that taking spin class doesn’t affect the BP at baseline (ai), but affects 

the slope of BP (bi) once the study starts. So, if d < 0 then spin class lowers the average slope, i.e., 

generally improves BP. I would compute the 95% interval for d and if it excludes zero conclude spin 

affects BP. 

 

 (c) Write JAGS code for this model 

   for(i in 1:100){for(j in 1:5){ 

      Y[i,j] ~ dnorm (a[i] + b[i]*j,sigy2inv) 

   }} 

   for(i in 1:100){ 

      a[i] ~ dnorm(m,siga2inv) 

      b[i] ~ dnorm(c + d*X[i],sigb2inv} 

  } 

  #priors… 

 

 

 

  



(3) A group of 10 ecologists is surveying a forest for red cockaded woodpeckers (RCP).  Each ecologist 

will walk along a different path and make 5 stops.  At each stop, they will record local conditions (tree 

density, elevation, etc.) and whether they see or hear an RCP.  The objective is to build a model for the 

types of habitat that are the most favorable to the RCP.      

(a) Describe a model and prior for these data 

Yij = 1 if ecologist i hears an RCP on stop j and Yij=0 otherwise. The response is binary and clustered 

by ecologist, so a mixed effects logistic regression model would be appropriate. 

 

Logit[Prob(Yij=1)] = b0 + b1*tree_densityij + b2*elevationij + ai 

 

where the random effects have distribution ai ~ Normal(0,s2). Uninformative priors are b0,b1,b2 ~ 

Normal(0,102) and s2 ~ InvGamma(0.1,0.1). 

 

(b) How would you summarize the results? 

We can test for covariate effects by comparing the posteriors of b1 and b2 to zero.  

(c) Write JAGS code for this model 

for(i in 1:10){for(j in 1:5){ 

      Y[i,j]            ~ dbern (p[i,j]) 

      logit(p[i,j]) = b0 + b1*tree_density[i,j] + b2*elevation[i,j] + a[i]  

}} 

for(i in 1:10){ 

      a[i] ~ dnorm(0,siga2inv) 

} 

     #priors… 

 

 

 

  



(4) In a study of the genetic determinants of smoking addiction, researchers sampled 1,000 people and 

asked whether they smoked.  For each subject, the also recorded 10,000 genetic markers.  The objective 

is to determine if any of the markers are associated with smoking addiction. 

 

(a) Describe a model and prior for these data 

Since the response is binary and there are many covariates, we could fit a logistic regression with 

Bayesian LASSO prior for the regression coefficients. 

 

(b) How would you summarize the results? 

I would conclude markers are important if their 95% posterior credible set excluded zero. 

(c) Write JAGS code for this model 

See listing 4.4 in the book. 

  



(5) To study the effect of an online advertising campaign by your company, you gather data for 1,000 

consumers and record the number of ads they have been exposed to (X) and the amount of money ($) 

they spent on your product in the past year (Y).  The data are plotted below. 

 

(a) Describe a model for these data 

The response variable Y is a mix of zeros and positive continuous response. So, I would build two 

models, one a logistic regression for whether the response is or is not zero, and then a log-linear 

regression for the non-zeros. So  

 

logit(Prob(Y>0)) = a0+a1X and for Y>0, log(Y) ~ Normal(b0+b1X, s2). 

 

For priors, a0,a1,b0,b1 ~ Normal(0,102) and s2 ~ InvGamma(0.1,0.1).  

 

(b) How would you summarize the results? 

The covariate affects the response if either a1 or b1 is non-zero. 

 

(c) Write JAGS code for this model 

Since the model for zero/non-zero and log(Y) do not share any parameters, you could run JAGS 

twice, separately.  First you would use all observations and let the response be Zi = 1 if Yi>0 and Zi=0 

if Yi=0.  This would be standard Bayesian logistic regression.  Second you could run JAGS using only 

the observations with Yi>0 and take the response as log(Yi). This would be standard Bayesian 

multiple regression. 

 


