
ST440/540 Applied Bayesian Analysis 
Lab activity for 4/7/2025 

 
- Friday (4/11): 540 abstracts due via email 

 

- Next Monday (4/14): Exams due on moodle for all sections. 

 

- Following Monday (4/21):  No in-person class, zoom session to discuss 440 exam and answer questions 

about 540 final. 

 

A. DISCUSSION QUESTIONS 

 
(1) Why can’t Bayesian just use AIC instead of DIC or WAIC? 

 

AIC doesn’t account for posterior uncertainty in the measure of for or the prior in the measure of 

model complexity. 

 
(2) For each model selection criteria, give a pro and con and describe a hypothetical situation where this 

method would be the best option. 

Methods Pro Con Best case 

Bayes factor The raw value is 
interpretable 

Can’t use it with 
improper priors, 
requires hard 
integration 

Conjugate, 
uninformative and 
simple.   

Stochastic search 
variable selection 

Tells you which 
variables to include 
with posterior 
probability 

Takes a long MCMC 
chain and thus a long 
time; sensitivity to 
priors 

The number of 
predictors isn’t too too 
large and all 
probabilities are small 

Cross validation Measuring exactly 
what you want a 
predictive method to 
do, easy to interpret 

Tough to make 
statements about 
inference, like which 
variables are most 
important.  Hard to 
compare many models 

You’re down to a few 
models and prediction 
is important 

DIC/WAIC Takes fit and 
complexity into 
account and applies to 
complex models 

Posterior needs be 
approx. normal and the 
actual values are 
meaningless 

Compare models with 
same likelihood; 
complex models were 
it’s hard to fit the 
model to several folds. 

 

 

  



(3) The effective number of parameters, pD, used in DIC is difficult to understand in general, but some 

special cases reveal it to be a sensible measure of model complexity.  For the two models below, 

summarize the effect of n, p and the parameter c on pD and describe how this is a reasonable measure 

of model complexity.  (Derivations on Pages 32-33 of https://st540.wordpress.ncsu.edu/files/2019/01/Derivations.pdf) 

 

(a) Consider the one-way random effects model with p subjects and n observations per subject, 

 

𝑌𝑖𝑗  =  𝜇𝑖 + 𝑒𝑖𝑗 

 

where the subject random effects are μj ~ Normal(0, τ2) and the errors are eij ~ Normal(0, σ2). Then  

𝑝𝐷  =  𝑝
𝑛

𝑛 + 𝑐
 

where c = σ2/τ2. 

 

- PD is between 0 and p and if p increases pD increases. 

- If c increases then pD decreases, because tau is smaller than sigma, this is a more informative prior. 

- As n increases, pd goes to p because the prior becomes less relevant. 

 

(b) Consider the usual linear regression model with n observations and p covariates,   

 

𝑌𝑖|𝛽 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑋𝑖𝛽, 𝜎2) 

 

and Zellner’s prior β ~ Normal(0,c*σ2(XTX)-1).  Then  

𝑝𝐷  =  𝑝
𝑐

𝑐 + 1
 

 

- PD is between 0 and p 

- If c is large, pD goes to p because the prior is uninformative 

- If c is small, pD goes to 0 because the prior is informative 

 

  



(4) Let Yt be the global average temperature in year t.  You are going to fit the model to the differences 

Zt = Yt-Yt-1 ~ Normal(μ,σ2), where the Zt are iid (this is a simple, but probably suboptimal analysis). 

 
https://data.giss.nasa.gov/gistemp/graphs/graph_data/Global_Mean_Estimates_based_on_Land_and_Ocean_Data/graph.txt 

  

(a) Interpret the parameter μ in the context of the problem and state hypotheses for a test that the 

climate is warming in terms of the parameters. 

 

The parameter μ is mean increase in temp per year. 

Ho: μ < 0 (global cooling) 

Ha: μ > 0 (global warming) 

 

(b) List 2-3 key assumptions in the model. For each assumption, describe a graphical way to verify the 

assumption and a statistic that could be used for a posterior predictive check. 

 

(1) We are assuming Zt are Gaussian.  A stat for the check is the skewness of the data. 

(2) We are assuming Zt all have the same variance.  A stat for the check is the ratio of the variance of 

the first 20 years versus the variance in the last 20 years. 

(3) We are assuming Zt all have the same mean.  A stat for the check is the difference of the mean of 

the first 20 years versus the mean in the last 20 years. 

(4) We are assuming Zt are independent over time.  A stat for the check is discussed below. 

  



(5)  The analysis below uses the data plotted in the left panel of the plot in problem (4).  The year is 

denoted t, and the temperature anomaly is Y.  The code assumes a linear regression model with the 

mean of Y being piecewise linear in time with a different slope beginning in 1960.  Posterior predictive 

checks are used to determine if the assumption of independent residuals is valid.  The metric used for 

the posterior predictive checks is the lag-1 residual covariance, Cov(Rt,Rt-1), for residual Rt=Yt-µt.  Note 

that because the mean of R is zero the covariance is E(Rt*Rt-1). 

 

(a) Can we conclude the assumption of residual independence is valid based on this analysis? 

 

No, D0 = 0.009 is well outside the posterior distribution of D under the model (the 0.95 quantile is 

0.002). 

 

(b) From this analysis, would you conclude there is an increasing temperature?  Or that the increase in 

temperature is higher after 1960 than before 1960? 

 

Both beta1 (slope prior to 1960) and beta2 (increase in slope after 1960) are positive with posterior 

probability near one.  However, because we have not modelled residual autocorrelation will these 

results are questionable.  

 

(c) What might be a next step in the analysis? 

 

I would refit do the analysis with a time series model with residual autocorrelation. 

 
# Define and plot the covariates 

X1 <- t 

X2 <- ifelse(t>1960,t-1960,0) 

par(mfrow=c(1,2)) 

plot(t,X1,type="l") 

plot(t,X2,type="l") 

 
fit       <- lm(Y~X1+X2) 

fitted    <- fit$coef[1] + fit$coef[2]*X1 + fit$coef[3]*X2 



residuals <- Y-fitted 

summary(fit) 

 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -4.9294330  0.9480514  -5.200 7.05e-07 *** 

X1           0.0024677  0.0004922   5.014 1.61e-06 *** 

X2           0.0130059  0.0010632  12.233  < 2e-16 *** 

 

Residual standard error: 0.1246 on 138 degrees of freedom 

Multiple R-squared:  0.8806,    Adjusted R-squared:  0.8789  

F-statistic: 508.9 on 2 and 138 DF,  p-value: < 2.2e-16 

 

par(mfrow=c(1,2)) 

plot(t,Y) 

lines(t,fitted) 

legend("topleft",c("Data","Fitted"),pch=c(1,NA),lty=c(NA,10),bty="n") 

 

plot(t,residuals) 

 

 
# Assuming the mean is zero, this is the covariance of Y_t-mu_t and Y_{t-1}-mu_{t-1} 

D0 <- sum(residuals[2:n]*residuals[2:n-1])/(n-1) 

D0 

[1] 0.009142346 

 

model_string <- "model{ 

 

  # Likelihood 

  for(i in 1:n){ 

    Y[i]  ~ dnorm(mu[i],taue) 

    mu[i] <- beta[1] + beta[2]*X1[i] + beta[3]*X2[i] 

  } 

 

  #Priors 

   for(j in 1:3){ 

      beta[j] ~ dnorm(0,0.001) 

   } 

   taue ~ dgamma(0.1,0.1) 

 

 



  # Posterior preditive checks 

  for(i in 1:n){ 

    Y2[i]   ~ dnorm(mu[i],taue) 

    res[i] <- Y2[i] - mu[i] 

  } 

  D <- inprod(res[2:n],res[1:(n-1)])/(n-1) 

 }" 

 

 

 

 

 

 library(rjags) 

 model <- jags.model(textConnection(model_string),  

                     data = list(Y=Y,n=n,X1=X1,X2=X2), 

                     n.chains=1,quiet=TRUE) 

 update(model, 10000, progress.bar="none") 

 samps <- coda.samples(model,  

          variable.names=c("D","beta"),  

          n.iter=20000, progress.bar="none") 

 summary(samps) 

 

2. Quantiles for each variable: 

 

              2.5%        25%        50%        75%     97.5% 

D       -0.0028981 -0.0009656 -1.289e-06  0.0009425  0.002903 

beta[1] -5.5774091 -4.9347870 -4.152e+00 -3.5778054 -2.067875 

beta[2]  0.0009825  0.0017663  2.064e-03  0.0024708  0.002804 

beta[3]  0.0118795  0.0130246  1.373e-02  0.0144431  0.015957 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


