
Chapter 1.5

The posterior prediction
distribution
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Bayesian prediction

I Often the objective is to predict a future event

I Example: Last spring we planted n = 10 seedlings and
Y = 2 survived the winter, if we plant n again this year
what is the probability at least one will survive the winter?

I Let Y ∗ be the predicted value and θ be the true survival
probability

I If the parameters were known then we would predict

Y ∗|θ ∼ Binomial(10, θ)

and thus Prob(Y > 0) = 1− (1− θ)10

I Of course, if we knew the parameters we would be doing
probability and not statistics
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Two types of uncertainty

I Sampling: Even if we knew θ, we could not predict Y
exactly because there is inherent randomness in which
plants survive. This is quantified using the likelihood
distribution, Y |θ.

I Parametric: We can never know θ exactly. This uncertainty
is quantified by its prior and posterior distributions.

I How to resolve each type of uncertainty?
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Plug-in approach

I One approach to prediction is the “plug-in” approach

I That is, if θ̂ is an estimate, then use prediction distribution

Y ∗ ∼ f (Y |θ̂)

I Example: θ̂ = 2/10 then predict

Prob(Y > 0) = 1− (1− 0.2)10

I If θ has small uncertainty this is fine

I Otherwise, this underestimates uncertainty in Y ∗
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The PPD

I For the sake of prediction, the parameters are not of
interest

I They are vehicles by which the data inform about the
predictive model

I The Posterior Predictive Distribution (PPD) averages
over their posterior uncertainty

f (Y ∗|Y ) =

∫
f (Y ∗|θ)p(θ|Y )dθ

I This properly accounts for parametric uncertainty

I The input is data, the output is a prediction distribution
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Computing the PPD

I Monte Carlo sampling approximates the PPD

I Say θ(1), ..., θ(S) are samples from the posterior

I If we make a sample for Y ∗ for each θ(s),

Y ∗(s) ∼ f (Y |θ(s))

then the Y ∗(s) are samples from the PPD

I The posterior predictive mean is approximated by the
sample mean of the Y ∗(s)

I The probability that Y ∗ > 0 is approximated by the sample
proportion of the Y ∗(s) that are non-zero
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Bayesian prediction

> # Data
> Y <- 2; n <- 10

> # The posterior is theta|Y~Beta(A,B)
> A <- Y+1; B <- n-Y+1
>
> # Plug in estimate of P(Ystar>0)
> 1-dbinom(0,10,.2)
[1] 0.8926258
>
> # Approximate the PPD using MC sampling
> theta <- rbeta(100000,A,B)
> Ystar <- rbinom(100000,10,theta)
> mean(Ystar>0)
[1] 0.87454
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Bayesian prediction
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