
Chapter 2.1

Conjugate priors
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Selecting priors

I Selecting the prior is one of the most important steps in a
Bayesian analysis

I There is no “right” way to select a prior

I The choices often depend on the objective of the study and
the nature of the data

1. Conjugate versus non-conjugate

2. Informative versus uninformative

3. Proper versus improper

4. Subjective versus objective
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Conjugate priors

I A prior is conjugate if the posterior is a member of the
same parametric family

I We have seen that if the response is binomial and we use
a beta prior, the posterior is also a beta

I This requires a pairing of the likelihood and prior

I There is a long list of conjugate priors https:
//en.wikipedia.org/wiki/Conjugate_prior

I The advantage of a conjugate prior is that the posterior is
available in closed form

I This is a window into Bayes learning and the prior effect
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Conjugate priors

I Here is an example of a non-conjugate prior

I Say Y ∼ Poisson(λ) and λ ∼ Beta(a,b)

I The posterior is

f (λ|Y ) ∝
{

exp(−λ)λY
}{

λa−1(1− λ)b−1
}

I This is not a beta PDF, so the prior is not conjugate

I In fact, this is not a member of any known (to me at least)
family of distributions

I For some likelihoods/parameters there is no known
conjugate prior
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Estimating a proportion using the beta/binomial model

I A fundamental task in statistics is to estimate a proportion
using a series of trials:

I What is the success probability of a new cancer treatment?
I What proportion of voters support my candidate?
I What proportion of the population has a rare gene?

I Let θ ∈ [0,1] be the proportion we are trying to estimate
(e.g., the success probability).

I We conduct n independent trials, each with success
probability θ, and observe Y ∈ {0, ...,n} successes.

I We would like obtain the posterior of θ, a 95% interval, and
a test that θ equals some predetermined value θ0.
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Frequentist analysis
I The maximum likelihood estimate is the sample proportion

θ̂ = Y/n

I For large Y and n − Y , the sampling distribution of θ̂ is
approximately

θ̂ ∼ Normal
(
θ,
θ(1− θ)

n

)
I The standard error (standard deviation of the sampling

distribution) is approximated as

SE(θ̂) ≈

√
θ̂(1− θ̂)

n

I A 95% CI is then
θ̂ ± 2SE(θ̂)
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Bayesian analysis - Likelihood

I Since Y is the number of successes in n independent
trials, each with success probability θ, its distribution is

Y |θ ∼ Binomial(n, θ)

I PMF: P(Y = y |θ) =
(n

y

)
θy (1− θ)n−y

I Mean: E(Y |θ) = nθ

I Variance: V(Y |θ) = nθ(1− θ)
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Bayesian analysis - Prior

I The parameter θ is continuous and between 0 and 1,
therefore a natural prior is

θ ∼ Beta(a,b)

I PDF: f (θ) = Γ(a+b)
Γ(a)Γ(b)θ

a−1(1− θ)b−1

I Mean: E(θ) = a
a+b

I Variance: V(θ) = ab
(a+b)2(a+b+1)
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Derivation of the posterior

I The posterior is θ|Y ∼ Beta(a + Y ,b + n − Y )

I See “Beta-binomial” in the online derivations
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Derivation of the posterior

I The likelihood is f (Y |θ) =
(n

Y

)
θY (1− θ)n−Y

I The prior is π(θ) = Γ(a+b)
Γ(a)Γ(b)θ

a−1(1− θ)b−1

I The posterior is

p(θ|Y ) =
f (Y |θ)π(θ)

m(Y )

=

[(n
Y

)
θY (1− θ)n−Y ] [ Γ(a+b)

Γ(a)Γ(b)θ
a−1(1− θ)b−1

]
m(Y )
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Derivation of the posterior

I Some housekeeping gives

p(θ|Y ) =

[(
n
Y

)
Γ(a + b)

Γ(a)Γ(b)

1
m(Y )

]
θY +a−1(1− θ)n−Y +b−1

= CθA−1(1− θ)B−1

where A = Y + a, B = n − Y + b and C is the mess

I The terms that involve θ,

θA−1(1− θ)B−1,

are the kernel of a Beta(A,B) distribution

I Therefore, θ|Y ∼ Beta(Y + a,n − Y + b)
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Simplifying the derivations

I In the end, we are always going look at the terms that
involve θ (the kernel) and find a matching distribution

I Therefore, the mess (C) will never be a factor

I Derivations simplify by absorbing all terms that do not
include a θ into the normalizing constant

I For example, instead of

p(θ|Y ) = CθA−1(1− θ)B−1

we can write

p(θ|Y ) ∝ θA−1(1− θ)B−1

I “∝” means “is proportional to”
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Derivation of the posterior

I Here is a much simpler derivation

p(θ|Y ) ∝ f (Y |θ)π(θ)

∝
[
θY (1− θ)n−Y

] [
θa−1(1− θ)b−1

]
∝ θA−1(1− θ)B−1

where A = Y + a and B = n − Y + b

I Therefore, θ|Y ∼ Beta(Y + a,n − Y + b)

I Note: m(Y ) was dropped in the first line, and thus is
excluded from all these computations
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Shrinkage
I The posterior mean is

θ̂B = E(θ|Y ) =
Y + a

n + a + b
I The posterior mean is between the sample proportion Y/n

and the prior mean a/(a + b):

θ̂B = w
Y
n

+ (1− w)
a

a + b

where the weight on the sample proportion is w = n
n+a+b

I When (in terms of n, a and b) is the θ̂B close to Y/n?

I When is the θ̂B shrunk towards the prior mean a/(a + b)?
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Selecting the prior

I The posterior is θ|Y ∼ Beta(a + Y ,b + n − Y )

I Therefore, a and b can be interpreted as the “prior number
of success and failures”

I This is useful for specifying the prior

I What prior to select if we have no information about θ
before collecting data?

I What prior to select if historical data/expert opinion
indicates that θ is likely between 0.6 and 0.8?
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Related problem

I The success probability of independent trials is θ

I Y is the number of successes before we observe n failures

I Then Y |θ ∼ NegativeBinomial(n, θ) and

Prob(Y = y |θ) =

(
y + n + 1

y

)
θy (1− θ)n

I Assume the prior θ ∼ Beta(a,b) and find the posterior
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Related problem

I The likelihood is f (y |θ) ∝ θy (1− θ)n

I The prior is π(θ) ∝ θa−1(1− θ)b−1

I Therefore, the posterior is

p(θ|Y ) ∝ [θy (1− θ)n]
[
θa−1(1− θ)b−1

]
= θA−1(1− θ)B−1

where A = y + a and B = n + b

I This is the kernel of the beta distribution, θ|Y ∼ Beta(A,B)
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Smoking example

I Two smokers have just quit

I Say subject i has probability θi of abstaining each day

I The number of days until relapse for two patients is 3 and
30 days

I Can we conclude the patients have different probabilities of
relapse?

I What is probability that their next attempts will exceed 30
days?
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Smoking example

I The likelihood is Yi ∼ NegativeBinomial(1, θi)

I Assume uniform priors θi ∼ Beta(1,1)

I The posteriors are θi |Yi ∼ Beta(Yi + 1,2)

I The posterior are plotted on the next slide

I The following slide uses Monte Carlo sampling to address
the two motivating questions
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Smoking example
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Smoking example
> S <- 1000000
> theta1 <- rbeta(S,3+1,2)
> theta2 <- rbeta(S,30+1,2)
> mean(theta2>theta1)
[1] 0.957222
>
> samp1 <- rnbinom(S,1,prob=1-theta1)
> samp2 <- rnbinom(S,1,prob=1-theta2)
> quantile(samp1,c(0.05,0.5,0.95))
5% 50% 95%
0 1 15
> quantile(samp2,c(0.05,0.5,0.95))
5% 50% 95%
0 13 109
> mean(samp1>30); mean(samp2>30)
[1] 0.015781
[1] 0.254129
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Estimating a rate using the Poisson/gamma model

I Estimating a rate has many applications:
I Number of virus attacks per day on a computer network
I Number of Ebola cases per day
I Number of diseased trees per square mile in a forest

I Let λ > 0 be the rate we are trying to estimate

I We make observations over a period (or region) of length
(or area) N and observe Y ∈ {0,1,2, ...} events

I The expected number of events is Nλ so that λ is the
expected number of events per time unit

I MLE: λ̂ = Y/N is the sample rate

I We would like obtain the posterior of λ
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Bayesian analysis - Likelihood

I Since Y is a count with mean Nλ, a natural model is

Y |λ ∼ Poisson(Nλ)

I PMF: P(Y = y |λ) = exp(−Nλ)(Nλ)y

y!

I Mean: E(Y |λ) = Nλ

I Variance: V(Y |λ) = Nλ
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Bayesian analysis - Prior

I The parameter λ is continuous and positive, therefore a
natural prior is

λ ∼ Gamma(a,b)

I PDF: f (λ) = ba

Γ(a)λ
a−1 exp(−bλ)

I Mean: E(λ) = a
b

I Variance: V(λ) = a
b2
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Derivation of the posterior

I The likelihood is exp(−Nλ)(Nλ)y

y! ∝ exp(−Nλ)λy

I The prior is proportional to exp(−bλ)λa−1

I Therefore, the posterior is

p(λ|Y ) ∝ [exp(−Nλ)λy ]
[
λa−1 exp(−bλ)

]
= λA−1 exp(−Bλ)

where A = y + a and B = N + b

I The posterior is λ|Y ∼ Gamma(a + Y ,b + N)

I See “Poisson-gamma” in the online derivations
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Shrinkage
I The posterior mean is

λ̂B = E(λ|Y ) =
Y + a
N + b

I The posterior mean is between the sample rate Y/n and
the prior mean a/b:

θ̂B = w
Y
n

+ (1− w)
a
b

where the weight on the sample rate is w = n
n+b

I When (in terms of N, a and b) is the λ̂B close to Y/n?

I When is the λ̂B shrunk towards the prior mean a/b?
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Selecting the prior

I The posterior is λ|Y ∼ Gamma(a + Y ,b + N)

I Therefore, a and b can be interpreted as the “prior number
of events and observation time”

I This is useful for specifying the prior

I What prior to select if we have no information about θ
before collecting data?

I What prior to select if historical data/expert opinion
indicates that λ is likely between 0.6 and 0.8?

27 / 44



Posterior with two observations

I Derive the posterior if Y1 ∼ Poisson(N1λ);
Y2 ∼ Poisson(N2λ); and λ ∼ Gamma(a,b)

I Derive the posterior if Yi , ...,Ym ∼ Poisson(Nλ) and
λ ∼ Gamma(a,b)

I We will work these problem in lab this week

I See “Poisson-gamma” in the online derivations
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AB testing example

I A tech company runs their regular user interface for N1 = 8
hours and gets Y1 = 4721 clicks

I The next day they launch a new user interface for N2 = 8
hours and get Y2 = 5209 clicks

I Assuming uninformative conjugate priors, determine if the
new user interface has a higher click rate
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AB testing example

I Period 1: the likelihood is Y1|λ1 ∼ Poisson(N1λ1)

I The conjugate prior is λ1 ∼ Gamma(a,b)

I The posterior is λ1|Y1 ∼ Gamma(Y1 + a,N1 + b)

I Period 2: λ2|Y2 ∼ Gamma(Y2 + a,N2 + b)
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Monte Carlo approximation

> S <- 100000
> a <- b <- 0.1
> N1 <- N2 <- 8
> Y1 <- 4721
> Y2 <- 5209
>
> # MC samples
> lambda1 <- rgamma(S,Y1+a,N1+b)
> lambda2 <- rgamma(S,Y2+a,N2+b)
>
> # Prob(new interface is better|data)
> mean(lambda2>lambda1)
[1] 1
> # The new interface almost surely works!
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Gaussian models

I The final distribution we’ll discuss is the Gaussian (normal)
distribution, Y ∼ Normal(µ, σ2)

I Domain: Y ∈ (−∞,∞)

I PDF: f (y) = 1√
2πσ

exp
[
− 1

2

( y−µ
σ

)2
]

I Mean: E(Y ) = µ

I Variance: V(Y ) = σ2

I In this section, we will discuss:
I Estimating the mean assuming the variance is known.
I Estimating the variance assuming the mean is known.
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Estimating a normal mean - Likelihood

I We assume the data consist of n independent and
identically distributed observations Y1, ...,Yn.

I Each is Gaussian,

Yi ∼ Normal(µ, σ2)

where σ is known

I The likelihood is then

n∏
i=1

f (yi |µ) =

(
1√
2πσ

)n

exp

[
− 1

2σ2

n∑
i=1

(yi − µ)2

]
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Bayesian analysis - Prior

I The parameter µ is continuous over the entire real line,
therefore a natural prior is

µ ∼ Normal(θ, τ2)

I The prior mean θ is the best guess before we observe data

I The math is slightly more interpretable if we set τ2 = σ2

m

I As we’ll see, the prior variance via m > 0 controls the
strength of the prior
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Derivation of the posterior
I Then the posterior is (w = n/(n + m))

µ|Y1, ...,Yn ∼ Normal
(

wȲ + (1− w)θ,
σ2

n + m

)

I See “normal-normal” in the online derivations
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Shrinkage

I The posterior mean is

µ̂B = E(µ|Y1, ...,Yn) = wȲ + (1− w)θ

where w = n/(n + m)

I Therefore, if m is small then µ̂B ≈ Ȳ , and if m is large
µ̂B ≈ θ

I If no prior information is available, take m to be small and
thus the prior is uninformative

I Small m gives large prior variance (relative to σ)
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Shrinkage

I The posterior variance is

V(µ|Y1, ...,Yn) =
σ2

n + m

I The sampling variance of Ȳ is σ2

n

I Therefore, we can loosely interpret m as the “prior number
of observations”
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Blood alcohol level analysis

I You are a defense attorney

I Your client is pulled over and given a breathalyzer test

I The n = 2 samples are Y1 = 0.082 and Y2 = 0.084

I The machine’s error has SD 0.005 (not really)

I What prior should we choose?

I Use the online GUI to explore the posterior
https://shiny.stat.ncsu.edu/bjreich/BAC/

I Is your client likely guilty of having BAC > 0.080?
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Estimating a normal variance - Likelihood

I We assume the data consist of n independent and
identically distributed observations Y1, ...,Yn.

I Each is Gaussian,

Yi ∼ Normal(µ, σ2)

where µ is known

I The likelihood is then

n∏
i=1

f (yi |µ) =

(
1√
2πσ

)n

exp

[
− 1

2σ2

n∑
i=1

(yi − µ)2

]
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Bayesian analysis - Prior

I The parameter σ2 is continuous over (0,∞), therefore a
natural prior is σ2 ∼ Gamma(a,b)

I However, the math is easier if we pick a gamma prior for
the inverse variance (precision) 1/σ2

I If 1/σ2 ∼ Gamma(a,b) then σ2 ∼ InverseGamma(a,b)

I This is the definition of the inverse gamma distribution

I The inverse gamma prior for σ2 is PDF

f (σ2) =
ba(σ2)−a−1 exp(−b/σ2)

Γ(a)
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Derivation of the posterior
I The posterior is

σ2|Y1, ...,Yn ∼ InverseGamma (n/2 + a,SSE/2 + b)

where SSE =
∑n

i=1(Yi − µ)2

I See “normal-inverse-gamma” in the online derivations
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Shrinkage

I The mean of an InverseGamma(a,b) distribution only
exists if a > 1

I The prior mean (if it exists) is b/(a− 1)

I The posterior mean is

SSE + b
n + 2a− 2

I It is common to take a and b to be small to give an
uninformative prior

I Then the posterior mean approximates the sample
variance SSE/(n − 1)
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Conjugate prior for a normal precision

I The precision is the inverse variance, τ = 1/σ2

I If Yi have mean µ and precision τ , the likelihood is
proportional to

n∏
i=1

f (yi |µ) ∝ τn/2 exp

[
−τ

2

n∑
i=1

(yi − µ)2

]

I If τ ∼ Gamma(a,b), then

τ |Y ∼ Gamma(n/2 + a,SSE/2 + b)

I This is the exact same analysis as the inverse gamma prior
for the variance
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