Chapter 2.1

Conjugate priors

Selecting priors

- Selecting the prior is one of the most important steps in a Bayesian analysis
- There is no "right" way to select a prior
- The choices often depend on the objective of the study and the nature of the data

1. Conjugate versus non-conjugate
2. Informative versus uninformative
3. Proper versus improper
4. Subjective versus objective

Conjugate priors

- A prior is conjugate if the posterior is a member of the same parametric family
- We have seen that if the response is binomial and we use a beta prior, the posterior is also a beta
- This requires a pairing of the likelihood and prior
- There is a long list of conjugate priors https: //en.wikipedia.org/wiki/Conjugate_prior
- The advantage of a conjugate prior is that the posterior is available in closed form
- This is a window into Bayes learning and the prior effect

Conjugate priors

- Here is an example of a non-conjugate prior
- Say $Y \sim \operatorname{Poisson}(\lambda)$ and $\lambda \sim \operatorname{Beta}(a, b)$
- The posterior is

$$
f(\lambda \mid Y) \propto\left\{\exp (-\lambda) \lambda^{Y}\right\}\left\{\lambda^{a-1}(1-\lambda)^{b-1}\right\}
$$

- This is not a beta PDF, so the prior is not conjugate
- In fact, this is not a member of any known (to me at least) family of distributions
- For some likelihoods/parameters there is no known conjugate prior

Estimating a proportion using the beta/binomial model

- A fundamental task in statistics is to estimate a proportion using a series of trials:
- What is the success probability of a new cancer treatment?
- What proportion of voters support my candidate?
- What proportion of the population has a rare gene?
- Let $\theta \in[0,1]$ be the proportion we are trying to estimate (e.g., the success probability).
- We conduct n independent trials, each with success probability θ, and observe $Y \in\{0, \ldots, n\}$ successes.
- We would like obtain the posterior of θ, a 95% interval, and a test that θ equals some predetermined value θ_{0}.

Frequentist analysis

- The maximum likelihood estimate is the sample proportion

$$
\hat{\theta}=Y / n
$$

- For large Y and $n-Y$, the sampling distribution of $\hat{\theta}$ is approximately

$$
\hat{\theta} \sim \operatorname{Normal}\left(\theta, \frac{\theta(1-\theta)}{n}\right)
$$

- The standard error (standard deviation of the sampling distribution) is approximated as

$$
\mathrm{SE}(\hat{\theta}) \approx \sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n}}
$$

- $\mathrm{A} 95 \% \mathrm{Cl}$ is then

$$
\hat{\theta} \pm 2 \operatorname{SE}(\hat{\theta})
$$

Bayesian analysis - Likelihood

- Since Y is the number of successes in n independent trials, each with success probability θ, its distribution is

$$
Y \mid \theta \sim \operatorname{Binomial}(n, \theta)
$$

- PMF: $P(Y=y \mid \theta)=\binom{n}{y} \theta^{y}(1-\theta)^{n-y}$
- Mean: $\mathrm{E}(Y \mid \theta)=n \theta$
- Variance: $\mathrm{V}(Y \mid \theta)=n \theta(1-\theta)$

Bayesian analysis - Prior

- The parameter θ is continuous and between 0 and 1 , therefore a natural prior is

$$
\theta \sim \operatorname{Beta}(a, b)
$$

- PDF: $f(\theta)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1}$
- Mean: $\mathrm{E}(\theta)=\frac{a}{a+b}$
- Variance: $\mathrm{V}(\theta)=\frac{a b}{(a+b)^{2}(a+b+1)}$

Derivation of the posterior

- The posterior is $\theta \mid Y \sim \operatorname{Beta}(a+Y, b+n-Y)$
- See "Beta-binomial" in the online derivations

Derivation of the posterior

- The likelihood is $f(Y \mid \theta)=\binom{n}{Y} \theta^{Y}(1-\theta)^{n-Y}$
- The prior is $\pi(\theta)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1}$
- The posterior is

$$
\begin{aligned}
p(\theta \mid Y) & =\frac{f(Y \mid \theta) \pi(\theta)}{m(Y)} \\
& =\frac{\left[\binom{n}{Y} \theta^{Y}(1-\theta)^{n-Y}\right]\left[\frac{\Gamma(a+b)}{\Gamma(a)\ulcorner(b)} \theta^{a-1}(1-\theta)^{b-1}\right]}{m(Y)}
\end{aligned}
$$

Derivation of the posterior

- Some housekeeping gives

$$
\begin{aligned}
p(\theta \mid Y) & =\left[\binom{n}{Y} \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \frac{1}{m(Y)}\right] \theta^{Y+a-1}(1-\theta)^{n-Y+b-1} \\
& =C \theta^{A-1}(1-\theta)^{B-1}
\end{aligned}
$$

where $A=Y+a, B=n-Y+b$ and C is the mess

- The terms that involve θ,

$$
\theta^{A-1}(1-\theta)^{B-1}
$$

are the kernel of a $\operatorname{Beta}(A, B)$ distribution

- Therefore, $\theta \mid Y \sim \operatorname{Beta}(Y+a, n-Y+b)$

Simplifying the derivations

- In the end, we are always going look at the terms that involve θ (the kernel) and find a matching distribution
- Therefore, the mess (C) will never be a factor
- Derivations simplify by absorbing all terms that do not include a θ into the normalizing constant
- For example, instead of

$$
p(\theta \mid Y)=C \theta^{A-1}(1-\theta)^{B-1}
$$

we can write

$$
p(\theta \mid Y) \propto \theta^{A-1}(1-\theta)^{B-1}
$$

- " \propto " means "is proportional to"

Derivation of the posterior

- Here is a much simpler derivation

$$
\begin{aligned}
p(\theta \mid Y) & \propto f(Y \mid \theta) \pi(\theta) \\
& \propto\left[\theta^{Y}(1-\theta)^{n-Y}\right]\left[\theta^{a-1}(1-\theta)^{b-1}\right] \\
& \propto \theta^{A-1}(1-\theta)^{B-1}
\end{aligned}
$$

where $A=Y+a$ and $B=n-Y+b$

- Therefore, $\theta \mid Y \sim \operatorname{Beta}(Y+a, n-Y+b)$
- Note: $m(Y)$ was dropped in the first line, and thus is excluded from all these computations

Shrinkage

- The posterior mean is

$$
\hat{\theta}_{B}=\mathrm{E}(\theta \mid Y)=\frac{Y+a}{n+a+b}
$$

- The posterior mean is between the sample proportion Y / n and the prior mean $a /(a+b)$:

$$
\hat{\theta}_{B}=w \frac{Y}{n}+(1-w) \frac{a}{a+b}
$$

where the weight on the sample proportion is $w=\frac{n}{n+a+b}$

- When (in terms of n, a and b) is the $\hat{\theta}_{B}$ close to Y / n ?
- When is the $\hat{\theta}_{B}$ shrunk towards the prior mean $a /(a+b)$?

Selecting the prior

- The posterior is $\theta \mid Y \sim \operatorname{Beta}(a+Y, b+n-Y)$
- Therefore, a and b can be interpreted as the "prior number of success and failures"
- This is useful for specifying the prior
- What prior to select if we have no information about θ before collecting data?
- What prior to select if historical data/expert opinion indicates that θ is likely between 0.6 and 0.8 ?

Related problem

- The success probability of independent trials is θ
- Y is the number of successes before we observe n failures
- Then $Y \mid \theta \sim \operatorname{NegativeBinomial}(n, \theta)$ and

$$
\operatorname{Prob}(Y=y \mid \theta)=\binom{y+n+1}{y} \theta^{y}(1-\theta)^{n}
$$

- Assume the prior $\theta \sim \operatorname{Beta}(a, b)$ and find the posterior

Related problem

- The likelihood is $f(y \mid \theta) \propto \theta^{y}(1-\theta)^{n}$
- The prior is $\pi(\theta) \propto \theta^{a-1}(1-\theta)^{b-1}$
- Therefore, the posterior is

$$
\begin{aligned}
p(\theta \mid Y) & \propto\left[\theta^{y}(1-\theta)^{n}\right]\left[\theta^{a-1}(1-\theta)^{b-1}\right] \\
& =\theta^{A-1}(1-\theta)^{B-1}
\end{aligned}
$$

where $A=y+a$ and $B=n+b$

- This is the kernel of the beta distribution, $\theta \mid Y \sim \operatorname{Beta}(A, B)$

Smoking example

- Two smokers have just quit
- Say subject i has probability θ_{i} of abstaining each day
- The number of days until relapse for two patients is 3 and 30 days
- Can we conclude the patients have different probabilities of relapse?
- What is probability that their next attempts will exceed 30 days?

Smoking example

- The likelihood is $Y_{i} \sim$ NegativeBinomial $\left(1, \theta_{i}\right)$
- Assume uniform priors $\theta_{i} \sim \operatorname{Beta}(1,1)$
- The posteriors are $\theta_{i} \mid Y_{i} \sim \operatorname{Beta}\left(Y_{i}+1,2\right)$
- The posterior are plotted on the next slide
- The following slide uses Monte Carlo sampling to address the two motivating questions

Smoking example

Smoking example

$>S \quad<-1000000$
$>$ thetal <- rbeta $(S, 3+1,2)$
$>$ theta2 <- rbeta(S,30+1,2)
> mean(theta2>theta1)
[1] 0.957222
$>$
> samp1 <- rnbinom(S,1,prob=1-theta1)
> samp2 <- rnbinom(S,1,prob=1-theta2)
> quantile(samp1,c(0.05,0.5,0.95))
5\% 50\% 95\%
0115
> quantile(samp2,c(0.05,0.5,0.95))
5\% 50\% 95\%
013109
> mean (samp1>30); mean(samp2>30)
[1] 0.015781
[1] 0.254129

Estimating a rate using the Poisson/gamma model

- Estimating a rate has many applications:
- Number of virus attacks per day on a computer network
- Number of Ebola cases per day
- Number of diseased trees per square mile in a forest
- Let $\lambda>0$ be the rate we are trying to estimate
- We make observations over a period (or region) of length (or area) N and observe $Y \in\{0,1,2, \ldots\}$ events
- The expected number of events is $N \lambda$ so that λ is the expected number of events per time unit
- MLE: $\hat{\lambda}=Y / N$ is the sample rate
- We would like obtain the posterior of λ

Bayesian analysis - Likelihood

- Since Y is a count with mean $N \lambda$, a natural model is

$$
Y \mid \lambda \sim \operatorname{Poisson}(N \lambda)
$$

- PMF: $P(Y=y \mid \lambda)=\frac{\exp (-N \lambda)(N \lambda)^{y}}{y!}$
- Mean: $\mathrm{E}(Y \mid \lambda)=N \lambda$
- Variance: $\mathrm{V}(Y \mid \lambda)=N \lambda$

Bayesian analysis - Prior

- The parameter λ is continuous and positive, therefore a natural prior is

$$
\lambda \sim \operatorname{Gamma}(a, b)
$$

- PDF: $f(\lambda)=\frac{b^{a}}{\Gamma(a)} \lambda^{a-1} \exp (-b \lambda)$
- Mean: $\mathrm{E}(\lambda)=\frac{a}{b}$
- Variance: $\mathrm{V}(\lambda)=\frac{a}{b^{2}}$

Derivation of the posterior

- The likelihood is $\frac{\exp (-N \lambda)(N \lambda)^{y}}{y!} \propto \exp (-N \lambda) \lambda^{y}$
- The prior is proportional to $\exp (-b \lambda) \lambda^{a-1}$
- Therefore, the posterior is

$$
\begin{aligned}
p(\lambda \mid Y) & \propto\left[\exp (-N \lambda) \lambda^{y}\right]\left[\lambda^{a-1} \exp (-b \lambda)\right] \\
& =\lambda^{A-1} \exp (-B \lambda)
\end{aligned}
$$

where $A=y+a$ and $B=N+b$

- The posterior is $\lambda \mid Y \sim \operatorname{Gamma}(a+Y, b+N)$
- See "Poisson-gamma" in the online derivations

Shrinkage

- The posterior mean is

$$
\hat{\lambda}_{B}=\mathrm{E}(\lambda \mid Y)=\frac{Y+a}{N+b}
$$

- The posterior mean is between the sample rate Y / n and the prior mean a / b :

$$
\hat{\theta}_{B}=w \frac{Y}{n}+(1-w) \frac{a}{b}
$$

where the weight on the sample rate is $w=\frac{n}{n+b}$

- When (in terms of N, a and b) is the $\hat{\lambda}_{B}$ close to Y / n ?
- When is the $\hat{\lambda}_{B}$ shrunk towards the prior mean a / b ?

Selecting the prior

- The posterior is $\lambda \mid Y \sim \operatorname{Gamma}(a+Y, b+N)$
- Therefore, a and b can be interpreted as the "prior number of events and observation time"
- This is useful for specifying the prior
- What prior to select if we have no information about θ before collecting data?
- What prior to select if historical data/expert opinion indicates that λ is likely between 0.6 and 0.8 ?

Posterior with two observations

- Derive the posterior if $Y_{1} \sim \operatorname{Poisson}\left(N_{1} \lambda\right)$; $Y_{2} \sim \operatorname{Poisson}\left(N_{2} \lambda\right)$; and $\lambda \sim \operatorname{Gamma}(a, b)$
- Derive the posterior if $Y_{i}, \ldots, Y_{m} \sim \operatorname{Poisson}(N \lambda)$ and $\lambda \sim \operatorname{Gamma}(a, b)$
- We will work these problem in lab this week
- See "Poisson-gamma" in the online derivations

AB testing example

- A tech company runs their regular user interface for $N_{1}=8$ hours and gets $Y_{1}=4721$ clicks
- The next day they launch a new user interface for $N_{2}=8$ hours and get $Y_{2}=5209$ clicks
- Assuming uninformative conjugate priors, determine if the new user interface has a higher click rate

$A B$ testing example

- Period 1: the likelihood is $Y_{1} \mid \lambda_{1} \sim \operatorname{Poisson}\left(N_{1} \lambda_{1}\right)$
- The conjugate prior is $\lambda_{1} \sim \operatorname{Gamma}(a, b)$
- The posterior is $\lambda_{1} \mid Y_{1} \sim \operatorname{Gamma}\left(Y_{1}+a, N_{1}+b\right)$
- Period 2: $\lambda_{2} \mid Y_{2} \sim \operatorname{Gamma}\left(Y_{2}+a, N_{2}+b\right)$

Monte Carlo approximation

$>S<-100000$
$>\mathrm{a}<-\mathrm{b}<-0.1$
$>$ N1 <- N2 <- 8
> Y1 <- 4721
> Y2 <- 5209
$>$
> \# MC samples
> lambda1 <- rgamma(S,Y1+a,N1+b)
> lambda2 <- rgamma(S,Y2+a,N2+b)
$>$
> \# Prob(new interface is better|data)
> mean(lambda2>lambda1)
[1] 1
> \# The new interface almost surely works!

Gaussian models

- The final distribution we'll discuss is the Gaussian (normal) distribution, $Y \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$
- Domain: $Y \in(-\infty, \infty)$
- PDF: $f(y)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^{2}\right]$
- Mean: $\mathrm{E}(Y)=\mu$
- Variance: $\mathrm{V}(Y)=\sigma^{2}$
- In this section, we will discuss:
- Estimating the mean assuming the variance is known.
- Estimating the variance assuming the mean is known.

Estimating a normal mean - Likelihood

- We assume the data consist of n independent and identically distributed observations Y_{1}, \ldots, Y_{n}.
- Each is Gaussian,

$$
Y_{i} \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)
$$

where σ is known

- The likelihood is then

$$
\prod_{i=1}^{n} f\left(y_{i} \mid \mu\right)=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}\right]
$$

Bayesian analysis - Prior

- The parameter μ is continuous over the entire real line, therefore a natural prior is

$$
\mu \sim \operatorname{Normal}\left(\theta, \tau^{2}\right)
$$

- The prior mean θ is the best guess before we observe data
- The math is slightly more interpretable if we set $\tau^{2}=\frac{\sigma^{2}}{m}$
- As we'll see, the prior variance via $m>0$ controls the strength of the prior

Derivation of the posterior

- Then the posterior is $(w=n /(n+m))$

$$
\mu \mid Y_{1}, \ldots, Y_{n} \sim \operatorname{Normal}\left(w \bar{Y}+(1-w) \theta, \frac{\sigma^{2}}{n+m}\right)
$$

- See "normal-normal" in the online derivations

Shrinkage

- The posterior mean is

$$
\hat{\mu}_{B}=\mathrm{E}\left(\mu \mid Y_{1}, \ldots, Y_{n}\right)=w \bar{Y}+(1-w) \theta
$$

where $w=n /(n+m)$

- Therefore, if m is small then $\hat{\mu}_{B} \approx \bar{Y}$, and if m is large $\hat{\mu}_{B} \approx \theta$
- If no prior information is available, take m to be small and thus the prior is uninformative
- Small m gives large prior variance (relative to σ)

Shrinkage

- The posterior variance is

$$
\mathrm{V}\left(\mu \mid Y_{1}, \ldots, Y_{n}\right)=\frac{\sigma^{2}}{n+m}
$$

- The sampling variance of \bar{Y} is $\frac{\sigma^{2}}{n}$
- Therefore, we can loosely interpret m as the "prior number of observations"

Blood alcohol level analysis

- You are a defense attorney
- Your client is pulled over and given a breathalyzer test
- The $n=2$ samples are $Y_{1}=0.082$ and $Y_{2}=0.084$
- The machine's error has SD 0.005 (not really)
- What prior should we choose?
- Use the online GUI to explore the posterior https://shiny.stat.ncsu.edu/bjreich/BAC/
- Is your client likely guilty of having BAC >0.080 ?

Estimating a normal variance - Likelihood

- We assume the data consist of n independent and identically distributed observations Y_{1}, \ldots, Y_{n}.
- Each is Gaussian,

$$
Y_{i} \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)
$$

where μ is known

- The likelihood is then

$$
\prod_{i=1}^{n} f\left(y_{i} \mid \mu\right)=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}\right]
$$

Bayesian analysis - Prior

- The parameter σ^{2} is continuous over $(0, \infty)$, therefore a natural prior is $\sigma^{2} \sim \operatorname{Gamma}(a, b)$
- However, the math is easier if we pick a gamma prior for the inverse variance (precision) $1 / \sigma^{2}$
- If $1 / \sigma^{2} \sim \operatorname{Gamma}(a, b)$ then $\sigma^{2} \sim \operatorname{InverseGamma}(a, b)$
- This is the definition of the inverse gamma distribution
- The inverse gamma prior for σ^{2} is PDF

$$
f\left(\sigma^{2}\right)=\frac{b^{a}\left(\sigma^{2}\right)^{-a-1} \exp \left(-b / \sigma^{2}\right)}{\Gamma(a)}
$$

Derivation of the posterior

- The posterior is

$$
\sigma^{2} \mid Y_{1}, \ldots, Y_{n} \sim \text { InverseGamma }(n / 2+a, S S E / 2+b)
$$

where $S S E=\sum_{i=1}^{n}\left(Y_{i}-\mu\right)^{2}$

- See "normal-inverse-gamma" in the online derivations

Shrinkage

- The mean of an InverseGamma(a, b) distribution only exists if $a>1$
- The prior mean (if it exists) is $b /(a-1)$
- The posterior mean is

$$
\frac{S S E+b}{n+2 a-2}
$$

- It is common to take a and b to be small to give an uninformative prior
- Then the posterior mean approximates the sample variance $S S E /(n-1)$

Conjugate prior for a normal precision

- The precision is the inverse variance, $\tau=1 / \sigma^{2}$
- If Y_{i} have mean μ and precision τ, the likelihood is proportional to

$$
\prod_{i=1}^{n} f\left(y_{i} \mid \mu\right) \propto \tau^{n / 2} \exp \left[-\frac{\tau}{2} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}\right]
$$

- If $\tau \sim \operatorname{Gamma}(a, b)$, then

$$
\tau \mid Y \sim \operatorname{Gamma}(n / 2+a, S S E / 2+b)
$$

- This is the exact same analysis as the inverse gamma prior for the variance

