Chapter 2.1

Conjugate priors



Selecting priors

» Selecting the prior is one of the most important steps in a
Bayesian analysis

» There is no “right” way to select a prior
» The choices often depend on the objective of the study and
the nature of the data
1. Conjugate versus non-conjugate
2. Informative versus uninformative

3. Proper versus improper

4. Subjective versus objective

44



Conjugate priors

» A prior is conjugate if the posterior is a member of the
same parametric family

» We have seen that if the response is binomial and we use
a beta prior, the posterior is also a beta

» This requires a pairing of the likelihood and prior

» There is a long list of conjugate priors https:
//en.wikipedia.org/wiki/Conjugate_prior

» The advantage of a conjugate prior is that the posterior is
available in closed form

» This is a window into Bayes learning and the prior effect


https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Conjugate_prior
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Here is an example of a non-conjugate prior
Say Y ~ Poisson()\) and \ ~ Beta(a, b)
The posterior is
FOY) {exp(—/\))\y} {Aa—1(1 - )\)b_1}
This is not a beta PDF, so the prior is not conjugate

In fact, this is not a member of any known (to me at least)
family of distributions

For some likelihoods/parameters there is no known
conjugate prior



Estimating a proportion using the beta/binomial model

» A fundamental task in statistics is to estimate a proportion
using a series of trials:
» What is the success probability of a new cancer treatment?
» What proportion of voters support my candidate?
» What proportion of the population has a rare gene?
» Let 6 € [0, 1] be the proportion we are trying to estimate
(e.g., the success probability).

» We conduct nindependent trials, each with success
probability 6, and observe Y € {0, ..., n} successes.

» We would like obtain the posterior of 6, a 95% interval, and
a test that 8 equals some predetermined value 6.



Frequentist analysis
» The maximum likelihood estimate is the sample proportion

0=Y/n

» For large Y and n— Y, the sampling distribution of 4 is

approximately
6 ~ Normal (0, o( n_ 0)>

» The standard error (standard deviation of the sampling
distribution) is approximated as

» A 95% Cl is then



Bayesian analysis - Likelihood

v

Since Y is the number of successes in nindependent
trials, each with success probability 6, its distribution is

Y|60 ~ Binomial(n, 8)

v

PMF: P(Y = y|0) = (;)gy(1 — )Y

v

Mean: E(Y|0) = no

v

Variance: V(Y|6) = no(1 — 0)



Bayesian analysis - Prior

v

The parameter 6 is continuous and between 0 and 1,
therefore a natural prior is

6 ~ Beta(a, b)

v

PDF: 1(0) = gty 0% ' (1 - 0)>~"

v

Mean: E(0) = ;%5

v

o _ b
Variance: V(0) = G ipptarsr



Derivation of the posterior

» The posterioris §|Y ~ Beta(a+ Y,b+n—-Y)

» See “Beta-binomial” in the online derivations
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Derivation of the posterior

» The likelihood is f(Y[0) = (})07(1 — )"

» The prior is 7(0) = rr((;ﬁ(bg) 02=1(1 — )b~

» The posterior is

pory) = I

()07 (1 =)™ | igrye™ (1 -6y
m(Y)
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Derivation of the posterior

» Some housekeeping gives

o = |(3) a7 100
= CoA'(1-9)8
where A=Y +a, B=n—- Y+ band Cis the mess
» The terms that involve 6,
0A1(1 - 9)B 1,

are the kernel of a Beta(A, B) distribution

» Therefore, 0|Y ~ Beta(Y +a,n— Y + b)
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Simplifying the derivations
» In the end, we are always going look at the terms that
involve 6 (the kernel) and find a matching distribution
» Therefore, the mess (C) will never be a factor

» Derivations simplify by absorbing all terms that do not
include a 6 into the normalizing constant

» For example, instead of
p(d]Y) = CoA~1(1 — 9)B~
we can write
p(8]Y) o 6471 (1 — )

» “oc” means “is proportional to”
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Derivation of the posterior

» Here is a much simpler derivation

pelY) o f(Y[0)m(0)
o [6Y(1 - 9)”4] [9?1(1 - 9)"*1]
o« 04711 — )BT

where A=Y +aandB=n—-Y +b
» Therefore, 6]Y ~ Beta(Y +a,n— Y + b)

» Note: m(Y) was dropped in the first line, and thus is
excluded from all these computations
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Shrinkage
» The posterior mean is

_ Y+a

- n+a+b

» The posterior mean is between the sample proportion Y/n
and the prior mean a/(a+ b):

0 = E(0]Y)

~ Y a
bg=w—+(1—w)——
B Wn+( W)a+b

where the weight on the sample proportion is w = ﬁgw
» When (in terms of n, aand b) is the 5 close to Y/n?

» When is the §5 shrunk towards the prior mean a/(a + b)?
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Selecting the prior

» The posterioris §|Y ~ Beta(a+ Y,b+n—Y)

» Therefore, a and b can be interpreted as the “prior number
of success and failures”

» This is useful for specifying the prior

» What prior to select if we have no information about ¢
before collecting data?

» What prior to select if historical data/expert opinion
indicates that 6 is likely between 0.6 and 0.87
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Related problem

v

The success probability of independent trials is 6

Y is the number of successes before we observe n failures

v

v

Then Y|6 ~ NegativeBinomial(n, §) and

Prob(Y = y|6) = <y+}’/’+1)9y(1 _g)"

v

Assume the prior 6 ~ Beta(a, b) and find the posterior
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Related problem

» The likelihood is f(y|0) > 6¥(1 — 6)"
» The prior is 7(#) oc #2-1(1 — §)P~1

» Therefore, the posterior is

pOLY) o [97(1-0) 6271 (1 - 0)°"]
0A—1(1 . 9)5—1

where A=y+aand B=n+b

» This is the kernel of the beta distribution, 6| Y ~ Beta(A, B)
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Smoking example

» Two smokers have just quit
» Say subject / has probability 6; of abstaining each day

» The number of days until relapse for two patients is 3 and
30 days

» Can we conclude the patients have different probabilities of
relapse?

» What is probability that their next attempts will exceed 30
days?
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Smoking example

v

The likelihood is Y; ~ NegativeBinomial(1,6;)

v

Assume uniform priors 6; ~ Beta(1,1)

v

The posteriors are 6;|Y; ~ Beta(Y; + 1,2)

v

The posterior are plotted on the next slide

v

The following slide uses Monte Carlo sampling to address
the two motivating questions
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Smoking example
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Smoking example

> S <- 1000000

> thetal <- rbeta(S,3+1,2)

> theta2 <- rbeta(s,30+1,2)

> mean (theta2>thetal)

[1] 0.957222

>

> sampl <- rnbinom(S,1l,prob=1-thetal)
> samp2 <- rnbinom(S,1,prob=1-theta?2)
> quantile (sampl,c(0.05,0.5,0.95))

5% 50% 95%

0 1 15

> quantile (samp2,c(0.05,0.5,0.95))

5% 50% 95%

0 13 109

> mean (sampl>30); mean (samp2>30)

[1] 0.015781

[1] 0.254129
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Estimating a rate using the Poisson/gamma model

» Estimating a rate has many applications:

» Number of virus attacks per day on a computer network
» Number of Ebola cases per day
» Number of diseased trees per square mile in a forest

» Let A > 0 be the rate we are trying to estimate

» We make observations over a period (or region) of length
(or area) N and observe Y € {0,1,2,...} events

» The expected number of events is N so that A is the
expected number of events per time unit

» MLE: A = Y/N is the sample rate

» We would like obtain the posterior of A
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Bayesian analysis - Likelihood

v

Since Y is a count with mean N, a natural model is

Y|\ ~ Poisson(N\)

v

PMF: P(Y = y|3) = 22

v

Mean: E(Y|\) = NA

v

Variance: V(Y|\) = N
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Bayesian analysis - Prior

v

The parameter X is continuous and positive, therefore a
natural prior is
A ~ Gamma(a, b)

PDF: f(\) = {52 " exp(—b))

v

v

Mean: E(\) = £

v

Variance: V(\) = &
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Derivation of the posterior

> The likelihood is ZEERIY o exp(—NA)W

v

The prior is proportional to exp(—bA) A2~

v

Therefore, the posterior is
POY) o [exp(—NA)N] [XH exp(—b)\)]
= M exp(—B))

where A=y+aand B=N+b

v

The posterioris A|Y ~ Gamma(a+ Y,b+ N)

v

See “Poisson-gamma” in the online derivations
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Shrinkage

» The posterior mean is

« Y+a

» The posterior mean is between the sample rate Y/n and
the prior mean a/b:

A Y a
= — 1 — —
g =w R ( W)b
where the weight on the sample rate is w = —njb

» When (in terms of N, aand b) is the Ag close to Y/n?

» When is the Az shrunk towards the prior mean a/b?
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Selecting the prior

» The posterioris A\|Y ~ Gamma(a+ Y, b+ N)

» Therefore, a and b can be interpreted as the “prior number
of events and observation time”

» This is useful for specifying the prior

» What prior to select if we have no information about ¢
before collecting data?

» What prior to select if historical data/expert opinion
indicates that X is likely between 0.6 and 0.87
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Posterior with two observations

v

Derive the posterior if Y; ~ Poisson(N;\);
Y> ~ Poisson(N2\); and A ~ Gamma(a, b)

v

Derive the posterior if Yj, ..., Ym ~ Poisson(N)) and
A ~ Gamma(a, b)

v

We will work these problem in lab this week

v

See “Poisson-gamma” in the online derivations
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AB testing example

» A tech company runs their regular user interface for Ny = 8
hours and gets Y; = 4721 clicks

» The next day they launch a new user interface for N, = 8
hours and get Y> = 5209 clicks

» Assuming uninformative conjugate priors, determine if the
new user interface has a higher click rate
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AB testing example

v

Period 1: the likelihood is Yi|\{ ~ Poisson(Nj\1)

v

The conjugate prior is Ay ~ Gamma(a, b)

v

The posterior is A{|Y; ~ Gamma(Y; + a, Ny + b)

v

Period 2: A\2| Yo ~ Gamma(Ys2 + a, No + b)
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Monte Carlo approximation

S <= 100000

a <- b <= 0.1
N1 <- N2 <- 8
Y1l <- 4721

Y2 <- 5209

# MC samples
lambdal <- rgamma (S,Yl+a,N1l+b)
lambda?2 <- rgamma (S,Y2+a,N2+b)

# Prob (new interface is better|data)
mean (lambda2>lambdal)
11 1

# The new interface almost surely works!

V— V V V V V V V V V V V V
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Gaussian models

» The final distribution we’ll discuss is the Gaussian (normal)
distribution, Y ~ Normal(y, 0?)
» Domain: Y € (—o0, )

» PDF: f(y) = \/2170 exp [f% ()’77”)2}
» Mean: E(Y) =pu

» Variance: V(Y) = o2

» In this section, we will discuss:
» Estimating the mean assuming the variance is known.
» Estimating the variance assuming the mean is known.
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Estimating a normal mean - Likelihood

» We assume the data consist of n independent and
identically distributed observations Yj, ..., Y;.

» Each is Gaussian,
Y; ~ Normal(u, 02)

where ¢ is known

» The likelihood is then

[Tl = (e ) oo [—21,2 > u)2]

i=1
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Bayesian analysis - Prior

v

The parameter 1 is continuous over the entire real line,
therefore a natural prior is

1 ~ Normal(6, 72)

v

The prior mean 6 is the best guess before we observe data

v

The math is slightly more interpretable if we set 72 = "—,s

v

As we’ll see, the prior variance via m > 0 controls the
strength of the prior
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Derivation of the posterior

» Then the posterior is (w = n/(n+ m))

Yi,.., Yn~N | Y+(1-
/’L‘ 15+ I'n orma <W +( W)ea n+m>

» See “normal-normal” in the online derivations
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Shrinkage

v

The posterior mean is
fig = E(u| Vi, ..., Yo) = w¥ + (1 - w)d

where w = n/(n+ m)

v

Therefore, if mis small then jig =~ Y,andif mis large
fig =0

v

If no prior information is available, take m to be small and
thus the prior is uninformative

v

Small m gives large prior variance (relative to o)
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Shrinkage

» The posterior variance is

o2

:n+m

V(ulYi, ..., Y)

. . v 2
» The sampling variance of Y'is -

» Therefore, we can loosely interpret m as the “prior number
of observations”
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Blood alcohol level analysis

» You are a defense attorney

» Your client is pulled over and given a breathalyzer test
» The n= 2 samples are Yy = 0.082 and Y, = 0.084

» The machine’s error has SD 0.005 (not really)

» What prior should we choose?

» Use the online GUI to explore the posterior
https://shiny.stat.ncsu.edu/bjreich/BAC/

» |s your client likely guilty of having BAC > 0.0807?
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https://shiny.stat.ncsu.edu/bjreich/BAC/

Estimating a normal variance - Likelihood

» We assume the data consist of n independent and
identically distributed observations Yj, ..., Y;.

» Each is Gaussian,
Y; ~ Normal(u, 02)

where p is known

» The likelihood is then

[Tl = (e ) oo [—21,2 > u)2]

i=1
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Bayesian analysis - Prior

» The parameter o2 is continuous over (0, o), therefore a
natural prior is 0® ~ Gamma(a, b)

v

However, the math is easier if we pick a gamma prior for
the inverse variance (precision) 1/02

v

If 1/02 ~ Gammay(a, b) then o2 ~ InverseGamma(a, b)

v

This is the definition of the inverse gamma distribution

The inverse gamma prior for o2 is PDF

v

b?(0®)~* " exp(—b/0?)
r(a)

f(o?) =

40/44



Derivation of the posterior

» The posterior is
02|y, ..., Yn ~ InverseGamma (n/2 + a, SSE /2 + b)

where SSE = "7 (Vi — p)?

» See “normal-inverse-gamma” in the online derivations
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Shrinkage

» The mean of an InverseGammay(a, b) distribution only
exists if a > 1

» The prior mean (if it exists) is b/(a— 1)

» The posterior mean is

SSE + b
n+2a—2

» It is common to take a and b to be small to give an
uninformative prior

» Then the posterior mean approximates the sample
variance SSE/(n—1)
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Conjugate prior for a normal precision

» The precision is the inverse variance, 7 = 1/02

» If Y; have mean p and precision 7, the likelihood is
proportional to

n n
T
[T fWile) o< 7 exp [—2 > - M)2]
i=1 i=1
» If 7 ~ Gamma(a, b), then

7|Y ~ Gamma(n/2 + a, SSE /2 + b)

» This is the exact same analysis as the inverse gamma prior
for the variance
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