Chapter 3.2

Markov chain Monte Carlo
sampling

Monte Carlo sampling

» Monte Carlo (MC) sampling is the predominant method of
Bayesian inference because it can be used for
high-dimensional models (i.e., with many parameters)

» The main idea is to approximate posterior summaries by
drawing samples from the posterior distribution, and then
using these samples to approximate posterior summaries
of interest

» This requires drawing samples from non-standard
distributions

» |t also requires careful analysis to be sure the
approximation is sufficiently accurate

30

Monte Carlo sampling

» Notation: Let 8 = (04, ..., 6p) be the collection of all
parameters in the model

» Notation: Let Y = (Y, ..., Y») be entire dataset
» The posterior f(0|Y) is a distribution

» 110, ..., 6(5) are samples from f(@|Y), then the mean of
the S samples approximates the posterior mean

» This only provides approximations of the posterior
summaries of interest.

» But how to draw samples from some arbitrary distribution
p(61Y)?

Software optioms

» There are now many software options for performing MC
sampling

» There are SAS procs and R functions for particular
analyses (e.g., the function BLR for linear regression)

» There are also all-purpose programs that work for virtually
any user-specified model: OpenBUGS; JAGS; Proc
MCMC; STAN; INLA (not MC)

» We will use JAGS, but they are all similar

MCMC

We will study the algorithms behind these programs, which is
important because it helps:

» Select models and priors conducive to MC sampling

» Anticipate bottlenecks

» Understand error messages and output

» Design your own sampler if these off-the-shelf programs
are too slow

The most common algorithms are Gibbs and Metropolis
sampling

30

Gibbs sampling

» Gibbs sampling is attractive because it can sample from
high-dimensional posteriors

» The main idea is to break the problem of sampling from the
high-dimensional joint distribution into a series of samples
from low-dimensional conditional distributions

» Updates can also be done in blocks (groups of parameters)

» Because the low-dimensional updates are done in a loop,
samples are not independent

» The dependence turns out to be a Markov distribution,
leading to the name Markov chain Monte Carlo (MCMC)

MCMOC for the Bayesian t test

» Say Y; ~ Normal(y, 02) with u ~ Normal(0, 02) and
02 ~ InvGamma(a, b)

» In Chapter 2 we saw that if we knew either 1 or 02, we can
sample from the other parameter

vV.— -2
nYo~2+pgo, 1
n0'72+0'072 ’ n0*2+0072

> ulo?, Y ~ Normal

» o2|p, Y ~ InvGamma [+a, 3 37 (Vi —)2 + b]

» But how to draw from the joint distribution?

Gibbs sampling for the Gaussian model

» The full conditional (FC) distribution is the distribution of
one parameter taking all other as fixed and known

nYo2+pugoy
» FC1: pufo?, Y ~ Normal | =2—% 1
Nno—<+o, no—<+o,

» FC2: 02|u, Y ~ InvGamma [2 + a, 3 327 (Vi — n)? + b]

Gibbs sampling

» In the Gaussian model 6 = (u,0?) so 61 = p and 6, = o2

» The algorithm begins by setting initial values for all
parameters, 8(©) = (89, ..., o).

» Variables are then sampled one at a time from their full
conditional distributions,

p(9j|t91 s een (91',1 , 9j+1 y oo Qp, Y)

» Rather than 1 p-dimensional joint sample, we make p
1-dimensional samples.

» The process is repeated until the required number of
samples have been generated.

30

Gibbs sampling

A Set initial value 8©) = (6%, ..., o)

B For iteration t,
FC1 Draw 676" ... o0~ Y

FC2 Draw 6(6%0 60" . 6% ¥

FCp Draw 510",00,, Y

We repeat step B S times giving posterior draws

oM6

10/30

Why does this work?

» 0 isn’t a sample from the posterior, it is an arbitrarily
chosen initial value

» 0(") likely isn’t from the posterior either. lts distribution
depends on ()

» 6@ likely isn’t from the posterior either. Its distribution
depends on 8 and 6(")

» Theorem: For any initial values, the chain will eventually
converge to the posterior

» Theorem: If 8(°) is a sample from the posterior, then §(5*+")
is too

11/30

Convergence

» We need to decide:

1. When has it converged?
2. When have we taken enough samples to approximate the
posterior?

» Once we decide the chain has converged at iteration T, we
discard the first T samples as “burn-in”

» We use the remaining S — T to approximate the posterior

» For example, the posterior mean (marginal over all other
parameters) of 0, is

S
o] (s)
E@GY) ~ g— > 6
s=5—-T+1

12/30

Examples

> http:
//wwwéd .stat .ncsu.edu/~reich/ABA/code/NN2

» http:
//wwwéd.stat.ncsu.edu/~reich/ABA/code/SLR

> http:
//wwwéd .stat .ncsu.edu/~reich/ABA/code/ttest

All derivations of full conditionals are in the online
derivations

v

13/30

http://www4.stat.ncsu.edu/~reich/ABA/code/NN2
http://www4.stat.ncsu.edu/~reich/ABA/code/NN2
http://www4.stat.ncsu.edu/~reich/ABA/code/SLR
http://www4.stat.ncsu.edu/~reich/ABA/code/SLR
http://www4.stat.ncsu.edu/~reich/ABA/code/ttest
http://www4.stat.ncsu.edu/~reich/ABA/code/ttest

Practice problem
Work out the full conditionals for A and b for the following model:

Y|\, b ~ Poisson(\)
Alb ~ Gamma(1, b)
b~ Gamma(1,1)

14/30

Metropolis sampling

» In Gibbs sampling each parameter is updated by sampling
from its full conditional distribution

» This is possible with conjugate priors

» However, if the prior is not conjugate it is not obvious how
to make a draw from the full conditional

» For example, if Y ~ Normal(u, 1) and u ~ Beta(a, b) then

p(ulY) o< exp [—;(Y - M)Z] p@(q —)t

» For some likelihoods there is no known conjugate prior,
e.g., logistic regression

» In these cases we use Metropolis sampling

15/30

Metropolis sampling

» Metropolis sampling is a version of rejection sampling

> Let 9}‘ be the current value of the parameter being updated
and ;) be the current value of all other parameters

» You propose a random candidate based on the current
value, e.g.,
07 ~ Normal(6;, j)

» The candidate is accepted with probability

0%161y, Y
R = min {1 , p(/*‘(j))}
p(6716), Y)
» If the candidate is not accepted then you simply retain the
previous value and move to the next step

16/30

Metropolis sampling

v

The candidate standard deviation s; is a tuning parameter

v

Ideally s; is tuned to give acceptance probability around
0.3-0.4

v

If s; is too small:

v

If s; is too large:

v

Off-the-shelf programs have default values, and many
allow you to change the value if the results are
unsatisfactory

17/30

Metropolis-Hastings sampling

> Denote 67 ~ q(6|6") as the candidate distribution

» The candidate distribution is symmetric if
q(07167) = a(67107)

» For example, if Gf ~ Normal(¢7, s/?) then

q(6716%) =

18/30

Metropolis-Hastings sampling

» Metropolis-Hastings (MH) sampling generalizes Metropolis
sampling to allow for asymmetric candidate distributions

» For example, if 6; € [0, 1] then a reasonable candidate is
07107 ~ Beta[100;7,10(1 — 67)]
> Then q(67(67) and q(67]60) are both beta PDFs

» MH proceeds exactly like Metropolis except the
acceptance probability is

o[POEIRg) V)a(616f)
' p(0:16¢). Y)a(oc]67)

19/30

Metropolis-Hastings sampling

» What if we take the candidate distribution to be the full
conditional distribution

07 ~ p(6716), Y)

» What is the acceptance ratio?

» What does this say about the relationship between Gibbs
and Metropolis Hastings sampling?

20/30

Variants

» You can combine Gibbs and Metropolis in the obvious way,
sampling directly from full conditional when possible and
Metropolis otherwise

» Adaptive MCMC varies the candidate distribution
throughout the chain

» Hamiltonian MCMC uses the gradient of the posterior in
the candidate distribution and is used in STAN

21/30

Blocked Gibbs/Metropolis

» If a group of parameters are highly correlated convergence
can be slow

» One way to improve Gibbs sampling is a block update

» For example, in linear regression might iterate between
sampling the block (4, ..., 8p) and o2

» Blocked Metropolis is possible too

» For example, the candidate for (51, ..., 8p) could be a
multivariate normal

22/30

Posterior correlation leads to slow convergence

23/30

Summary

v

With the combination of Gibbs and Metropolis-Hastings
sampling we can fit virtually any model

In some cases Bayesian computing is actually preferable
to maximum likelihood analysis

In most cases Bayesian computing is slower

However, in the opinion of many it is worth the wait for
improved uncertainty quantification and interpretability

In all cases it is important to carefully monitor convergence

24/30

Options for coding MCMC

v

Writing your own code

v

Bayesian options in SAS procedures

v

R packages for specific models

v

All-purpose software like JAGS, BUGS, PROC MCMC, and
STAN

25/30

Bayes in SAS procedures and R functions

» Here is a SAS proc

proc phreg data=VALung;
class PTherapy(ref="no‘) Cell(ref="large’)
Therapy(ref="standard’);
model Time*Status(0) = KPS Duration;
bayes seed=1 outpost=cout coeffprior=uniform
plots=density;

run;

» In R you can use BLR for linear regression, MCMClogit for
logistic regression, etc.

26/30

Why Just Another Gibbs Sampler (JAGS)?

» You can fit virtually any model

v

You can call JAGS from R which allows for plotting and
data manipulation in R

v

It runs on all platforms: LINUX, Mac, Windows

v

There is a lot of help online

v

R has many built in packages for convergence diagnostics

27/30

How does JAGS work?

» You specify the model by declaring the likelihood and priors

» JAGS then sets up the MCMC sampler, e.g., works out the
full conditional distributions for all parameters

» |t returns MCMC samples in a matrix or array

» It also automatically produces posterior summaries like
means, credible sets, and convergence diagnostics

» User's manual: http://blue.for.msu.edu/CSTAT__
13/jags_user_manual .pdf

28/30

http://blue.for.msu.edu/CSTAT_13/jags_user_manual.pdf
http://blue.for.msu.edu/CSTAT_13/jags_user_manual.pdf

Running JAGS from R has the following steps

1. Install JAGS: https://sourceforge.net/projects/
mcmc-Jjags/files/JAGS/4.x/Windows/

2. Download rjags from CRAN and load the library

3. Specify the model as a string

4. Compile the model using the function jags.model

5. Draw burn-in samples using the function update

6. Draw posterior samples using the function coda.samples

7. Inspect the results using the plot and summary functions

29/30

https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Windows/
https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Windows/

Examples

» The course website has many example of Bayesian
analyses using JAGS

» There are also comparisons with other software

» For moderately-sized problems JAGS is competitive with
these methods

» For really big and/or complex analyses STAN is preferred

» JAGS is easier to code and so we will use it through the
course, but you should be familiar with other software

» Once you understand JAGS, switching to the others is
straightforward

30/30

