
Chapter 3.2

Markov chain Monte Carlo
sampling

1 / 30

Monte Carlo sampling

I Monte Carlo (MC) sampling is the predominant method of
Bayesian inference because it can be used for
high-dimensional models (i.e., with many parameters)

I The main idea is to approximate posterior summaries by
drawing samples from the posterior distribution, and then
using these samples to approximate posterior summaries
of interest

I This requires drawing samples from non-standard
distributions

I It also requires careful analysis to be sure the
approximation is sufficiently accurate

2 / 30

Monte Carlo sampling

I Notation: Let θ = (θ1, ..., θp) be the collection of all
parameters in the model

I Notation: Let Y = (Y1, ...,Yn) be entire dataset

I The posterior f (θ|Y) is a distribution

I If θ(1), ..., θ(S) are samples from f (θ|Y), then the mean of
the S samples approximates the posterior mean

I This only provides approximations of the posterior
summaries of interest.

I But how to draw samples from some arbitrary distribution
p(θ|Y)?

3 / 30

Software optioms

I There are now many software options for performing MC
sampling

I There are SAS procs and R functions for particular
analyses (e.g., the function BLR for linear regression)

I There are also all-purpose programs that work for virtually
any user-specified model: OpenBUGS; JAGS; Proc
MCMC; STAN; INLA (not MC)

I We will use JAGS, but they are all similar

4 / 30

MCMC

We will study the algorithms behind these programs, which is
important because it helps:

I Select models and priors conducive to MC sampling

I Anticipate bottlenecks

I Understand error messages and output

I Design your own sampler if these off-the-shelf programs
are too slow

The most common algorithms are Gibbs and Metropolis
sampling

5 / 30

Gibbs sampling

I Gibbs sampling is attractive because it can sample from
high-dimensional posteriors

I The main idea is to break the problem of sampling from the
high-dimensional joint distribution into a series of samples
from low-dimensional conditional distributions

I Updates can also be done in blocks (groups of parameters)

I Because the low-dimensional updates are done in a loop,
samples are not independent

I The dependence turns out to be a Markov distribution,
leading to the name Markov chain Monte Carlo (MCMC)

6 / 30

MCMC for the Bayesian t test

I Say Yi ∼ Normal(µ, σ2) with µ ∼ Normal(0, σ2
0) and

σ2 ∼ InvGamma(a,b)

I In Chapter 2 we saw that if we knew either µ or σ2, we can
sample from the other parameter

I µ|σ2,Y ∼ Normal
[

nȲσ−2+µ0σ
−2
0

nσ−2+σ−2
0

, 1
nσ−2+σ−2

0

]

I σ2|µ,Y ∼ InvGamma
[n

2 + a, 1
2
∑n

i−1(Yi − µ)2 + b
]

I But how to draw from the joint distribution?

7 / 30

Gibbs sampling for the Gaussian model

I The full conditional (FC) distribution is the distribution of
one parameter taking all other as fixed and known

I FC1: µ|σ2,Y ∼ Normal
[

nȲσ−2+µ0σ
−2
0

nσ−2+σ−2
0

, 1
nσ−2+σ−2

0

]

I FC2: σ2|µ,Y ∼ InvGamma
[n

2 + a, 1
2
∑n

i−1(Yi − µ)2 + b
]

8 / 30

Gibbs sampling

I In the Gaussian model θ = (µ, σ2) so θ1 = µ and θ2 = σ2

I The algorithm begins by setting initial values for all
parameters, θ(0) = (θ

(0)
1 , ..., θ

(0)
p).

I Variables are then sampled one at a time from their full
conditional distributions,

p(θj |θ1, ..., θj−1, θj+1, ..., θp,Y)

I Rather than 1 p-dimensional joint sample, we make p
1-dimensional samples.

I The process is repeated until the required number of
samples have been generated.

9 / 30

Gibbs sampling

A Set initial value θ(0) = (θ
(0)
1 , ..., θ

(0)
p)

B For iteration t ,
FC1 Draw θ

(t)
1 |θ

(t−1)
2 , ..., θ

(t−1)
p ,Y

FC2 Draw θ
(t)
2 |θ

(t)
1 , θ

(t−1)
3 , ..., θ

(t−1)
p ,Y

...

FCp Draw θ
(t)
p |θ

(t)
1 , ..., θ

(t)
p−1,Y

We repeat step B S times giving posterior draws

θ(1), ...,θ(S)

10 / 30

Why does this work?

I θ(0) isn’t a sample from the posterior, it is an arbitrarily
chosen initial value

I θ(1) likely isn’t from the posterior either. Its distribution
depends on θ(0)

I θ(2) likely isn’t from the posterior either. Its distribution
depends on θ(0) and θ(1)

I Theorem: For any initial values, the chain will eventually
converge to the posterior

I Theorem: If θ(s) is a sample from the posterior, then θ(s+1)

is too

11 / 30

Convergence

I We need to decide:
1. When has it converged?
2. When have we taken enough samples to approximate the

posterior?
I Once we decide the chain has converged at iteration T , we

discard the first T samples as “burn-in”

I We use the remaining S − T to approximate the posterior

I For example, the posterior mean (marginal over all other
parameters) of θj is

E(θj |Y) ≈
1

S − T

S∑
s=S−T +1

θ
(s)
j

12 / 30

Examples

I http:
//www4.stat.ncsu.edu/~reich/ABA/code/NN2

I http:
//www4.stat.ncsu.edu/~reich/ABA/code/SLR

I http:
//www4.stat.ncsu.edu/~reich/ABA/code/ttest

I All derivations of full conditionals are in the online
derivations

13 / 30

http://www4.stat.ncsu.edu/~reich/ABA/code/NN2
http://www4.stat.ncsu.edu/~reich/ABA/code/NN2
http://www4.stat.ncsu.edu/~reich/ABA/code/SLR
http://www4.stat.ncsu.edu/~reich/ABA/code/SLR
http://www4.stat.ncsu.edu/~reich/ABA/code/ttest
http://www4.stat.ncsu.edu/~reich/ABA/code/ttest

Practice problem
Work out the full conditionals for λ and b for the following model:

Y |λ,b ∼ Poisson(λ)
λ|b ∼ Gamma(1,b)
b ∼ Gamma(1,1)

14 / 30

Metropolis sampling

I In Gibbs sampling each parameter is updated by sampling
from its full conditional distribution

I This is possible with conjugate priors

I However, if the prior is not conjugate it is not obvious how
to make a draw from the full conditional

I For example, if Y ∼ Normal(µ,1) and µ ∼ Beta(a,b) then

p(µ|Y) ∝ exp

[
−1

2
(Y − µ)2

]
µ(a−1)(1− µ)b−1

I For some likelihoods there is no known conjugate prior,
e.g., logistic regression

I In these cases we use Metropolis sampling

15 / 30

Metropolis sampling

I Metropolis sampling is a version of rejection sampling

I Let θ∗j be the current value of the parameter being updated
and θ(j) be the current value of all other parameters

I You propose a random candidate based on the current
value, e.g.,

θc
j ∼ Normal(θ∗j , s

2
j)

I The candidate is accepted with probability

R = min

{
1,

p(θc
j |θ(j),Y)

p(θ∗j |θ(j),Y)

}

I If the candidate is not accepted then you simply retain the
previous value and move to the next step

16 / 30

Metropolis sampling

I The candidate standard deviation sj is a tuning parameter

I Ideally sj is tuned to give acceptance probability around
0.3-0.4

I If sj is too small:

I If sj is too large:

I Off-the-shelf programs have default values, and many
allow you to change the value if the results are
unsatisfactory

17 / 30

Metropolis-Hastings sampling

I Denote θc
j ∼ q(θ|θ∗) as the candidate distribution

I The candidate distribution is symmetric if

q(θ∗|θc
j) = q(θc

j |θ
∗)

I For example, if θc
j ∼ Normal(θ∗j , s

2
j) then

q(θc
j |θ

∗) =
1√
2πsj

exp

[
−
(θc

j − θ
∗
j)

2

2s2
j

]
= q(θ∗|θc

j).

18 / 30

Metropolis-Hastings sampling

I Metropolis-Hastings (MH) sampling generalizes Metropolis
sampling to allow for asymmetric candidate distributions

I For example, if θj ∈ [0,1] then a reasonable candidate is

θc
j |θ

∗
j ∼ Beta[10θ∗j ,10(1− θ∗j)]

I Then q(θ∗j |θc
j) and q(θc

j |θ
∗) are both beta PDFs

I MH proceeds exactly like Metropolis except the
acceptance probability is

R = min

{
1,

p(θc
j |θ(j),Y)q(θ∗j |θc

j)

p(θ∗j |θ(j),Y)q(θc
j |θ∗j)

}

19 / 30

Metropolis-Hastings sampling

I What if we take the candidate distribution to be the full
conditional distribution

θc
j ∼ p(θc

j |θ(j),Y)

I What is the acceptance ratio?

I What does this say about the relationship between Gibbs
and Metropolis Hastings sampling?

20 / 30

Variants

I You can combine Gibbs and Metropolis in the obvious way,
sampling directly from full conditional when possible and
Metropolis otherwise

I Adaptive MCMC varies the candidate distribution
throughout the chain

I Hamiltonian MCMC uses the gradient of the posterior in
the candidate distribution and is used in STAN

21 / 30

Blocked Gibbs/Metropolis

I If a group of parameters are highly correlated convergence
can be slow

I One way to improve Gibbs sampling is a block update

I For example, in linear regression might iterate between
sampling the block (β1, ..., βp) and σ2

I Blocked Metropolis is possible too

I For example, the candidate for (β1, ..., βp) could be a
multivariate normal

22 / 30

Posterior correlation leads to slow convergence

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

β1

β 2

● ●

●●

●●

●●

●●

β(0)
β(1)

β(2)

β(3)

23 / 30

Summary

I With the combination of Gibbs and Metropolis-Hastings
sampling we can fit virtually any model

I In some cases Bayesian computing is actually preferable
to maximum likelihood analysis

I In most cases Bayesian computing is slower

I However, in the opinion of many it is worth the wait for
improved uncertainty quantification and interpretability

I In all cases it is important to carefully monitor convergence

24 / 30

Options for coding MCMC

I Writing your own code

I Bayesian options in SAS procedures

I R packages for specific models

I All-purpose software like JAGS, BUGS, PROC MCMC, and
STAN

25 / 30

Bayes in SAS procedures and R functions

I Here is a SAS proc

proc phreg data=VALung;
class PTherapy(ref=‘no‘) Cell(ref=‘large‘)
Therapy(ref=‘standard‘);
model Time*Status(0) = KPS Duration;
bayes seed=1 outpost=cout coeffprior=uniform
plots=density;

run;

I In R you can use BLR for linear regression, MCMClogit for
logistic regression, etc.

26 / 30

Why Just Another Gibbs Sampler (JAGS)?

I You can fit virtually any model

I You can call JAGS from R which allows for plotting and
data manipulation in R

I It runs on all platforms: LINUX, Mac, Windows

I There is a lot of help online

I R has many built in packages for convergence diagnostics

27 / 30

How does JAGS work?

I You specify the model by declaring the likelihood and priors

I JAGS then sets up the MCMC sampler, e.g., works out the
full conditional distributions for all parameters

I It returns MCMC samples in a matrix or array

I It also automatically produces posterior summaries like
means, credible sets, and convergence diagnostics

I User’s manual: http://blue.for.msu.edu/CSTAT_
13/jags_user_manual.pdf

28 / 30

http://blue.for.msu.edu/CSTAT_13/jags_user_manual.pdf
http://blue.for.msu.edu/CSTAT_13/jags_user_manual.pdf

Running JAGS from R has the following steps

1. Install JAGS: https://sourceforge.net/projects/
mcmc-jags/files/JAGS/4.x/Windows/

2. Download rjags from CRAN and load the library

3. Specify the model as a string

4. Compile the model using the function jags.model

5. Draw burn-in samples using the function update

6. Draw posterior samples using the function coda.samples

7. Inspect the results using the plot and summary functions

29 / 30

https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Windows/
https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Windows/

Examples

I The course website has many example of Bayesian
analyses using JAGS

I There are also comparisons with other software

I For moderately-sized problems JAGS is competitive with
these methods

I For really big and/or complex analyses STAN is preferred

I JAGS is easier to code and so we will use it through the
course, but you should be familiar with other software

I Once you understand JAGS, switching to the others is
straightforward

30 / 30

