
Chapter 3.1

Deterministic methods
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Bayesian computing

I Give the prior and data, the posterior is fixed and a
Bayesian analysis boils down to summarizing the posterior

I We need point estimates, credible sets, etc

I Summarizing a p-dimensional posterior distribution is
challenging for large p

I In the 80’s, Bayesian computing was unable to do this for
more than a few parameters

I In the 90’s, new algorithms were developed that
revolutionized Bayesian statistics

I Understanding these algorithms is obviously important
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Approaches to Bayesian computing

Some approaches to dealing with complicated joint posteriors:

I Just use a point estimate (e.g., MAP), ignore uncertainty

I Approximate the posterior as Gaussian

I Numerical integration

I Markov Chain Monte Carlo (MCMC) sampling
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Outline of Chapter 3

I Deterministic methods
I MAP estimation
I Numerical integration
I Bayesian Central Limit Theorem

I MCMC algorithms
I Gibbs sampling
I Metropolis-Hastings sampling

I Just Another Gibbs Sampler (JAGS)
I Diagnostic and improving convergence

I Setting initial values
I Convergence diagnostics
I Improving convergence
I Dealing with large datasets
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MAP estimation

I Sometimes you don’t need an entire posterior distribution
and a single point estimate will do

I Example: prediction in machine learning

I The Maximum a Posteriori (MAP) estimate is the posterior
mode

θ̂MAP = argmax
θ

p(θ|Y) = argmax
θ

log[f (Y|θ)] + log[π(θ)]

I This is similar to the maximum likelihood estimation but
includes the prior
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Univariate example

Say Y |θ ∼ Binomial(n, θ) and θ ∼ Beta(0.5,0.5), find θ̂MAP

I The likelihood is f (Y |θ) ∝ θY (1− θ)n−Y

I The log likelihood is1

log[f (Y |θ)] = Y log(θ) + (n − Y ) log(1− θ)

I The prior is π(θ) ∝ θ0.5−1(θ)0.5−1

I The log prior1 is log[π(θ)] = −0.5 log(θ)− 0.5 log(1− θ)

I Therefore, the MAP estimator is

θ̂ = arg max
θ

(Y − 0.5) log(θ) + (n − Y − 0.5) log(1− θ)

1ignoring constants that don’t depend on θ
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Univariate example

Say Y |θ ∼ Binomial(n, θ) and θ ∼ Beta(0.5,0.5), find θ̂MAP

I The MAP estimator is

θ̂ = arg max
θ

(Y − 0.5) log(θ) + (n − Y − 0.5) log(1− θ)

I Taking the derivative and setting to zero gives

Y − 0.5
θ

− n − Y − 0.5
1− θ

= 0

I The solution (assuming Y ,n − Y ≥ 1) is

θ̂ =
Y − 0.5
n − 1
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Bayesian central limit theorem

I Another simplification is to approximate the posterior as
Gaussian

I Berstein-Von Mises Theorem: As the sample size grows
the posterior doesn’t depend on the prior

I Frequentist result: As the sample size grows the likelihood
function is approximately normal

I Bayesian CLT: For large n and some other conditions
θ|Y ≈ Normal
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Bayesian central limit theorem

I Bayesian CLT: For large n and some other conditions

θ ∼ Normal[θ̂MAP , I(θ̂MAP)
−1]

I I is Fisher’s information matrix

I The (j , k) element of I is

− ∂2

∂θj∂θk
log[p(θ|Y)]

evaluated at θ̂MAP

I We have marginal and conditional means, standard
deviations and intervals for the normal distribution

9 / 16



Univariate example
Say Y |θ ∼ Binomial(n, θ) and θ ∼ Beta(0.5,0.5), find the
Gaussian approximation for p(θ|Y)

I We have seen that (assuming Y ,n − Y ≥ 1),

θ̂MAP =
Y − 0.5
n − 1

I We have also seen (Jeffreys lecture) that

I(θ) = nθ−1(1− θ)−1

I Therefore,

θ|Y ≈ Normal
[
θ̂MAP , I(θ̂MAP)

−1
]

≈ Normal
[
θ̂MAP , θ̂MAP(1− θ̂MAP)/n

]
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Illustration of the Bayesian CLT
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Illustration of the Bayesian CLT
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Illustration of the Bayesian CLT
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Bayesian central limit theorem

I For large datasets with a small number of parameters
evoking the Bayes CLT is probably the best approach

I The approximate posterior can be computing using
standard software (e.g., glm in R)

I The numerical values (e.g., intervals) will equal the
frequentist values, but the interpretation remains Bayesian

I Why not just do a frequentist analysis? Well, why not just
do a Bayesian analysis?
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Numerical integration

I Many posterior summaries of interest are integrals over the
posterior

I Ex: E(θj |Y) =
∫
θjp(θ)dθ

I Ex: V(θj |Y) =
∫
[θj − E(θ|Y)]2p(θ)dθ

I These are p dimensional integrals that we usually can’t
solve analytically

I A grid approximation is a crude approach

I Gaussian quadrature is better
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Numerical integration

I Numerical integration is only feasible for small p

I The Iteratively Nested Laplace Approximation (INLA) is an
even more sophisticated method

I INLA combines Gaussian approximations with numerical
integration

I This works well if most of the parameters are
approximately normal and only a few are non-Gaussian
and require numerical integration
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