Chapter 6

Hierarchical models



Hierarchical models

» Hierarchical modeling provides a framework for building
complex and high-dimensional models from simple and
low-dimensional building blocks

» Of course, it is possible to analyze these models using
non-Bayesian methods

» However, this modeling framework is popular in the
Bayesian literature because MCMC is conducive to
hierarchical models

» Both “divide and conquer” big problems by splitting them
into a series of smaller problems in the same way
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We build models!
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Outline

These notes cover Chapter 6
» Building a hierarchical model through layers

» Directed acyclic graphs

» Several examples



Hierarchical models

Often Bayesian models can we written in the following layers of
the hierarchy

1. Data layer: [Y|0, «] is the likelihood for the observed data
Y given the model parameters

2. Process layer: [0|a] is the model for the parameters 6
that define the latent data generating process

3. Prior layer: [«] prior for hyperparameters



Epidemiology example - Data layer

» Let S; and /; be the number of susceptible and infected
individuals in a population, respectively, at time t

» The data Y; is the number of observed cases at time t
» The data layer models our ability to measure the process /;
» Data layer: Y;|/; ~ Binomial(/;, p)

» This assumes no false positives and false negative
probability p



Epidemiology example - Process layer

» Scientific understanding of the disease is used to model
disease propagation

» We might select the simple Reed-Frost model

Process layer: lt+1 ~ Binomial [St,1 -(1- q)’f]
Sti1 =St — ly1

» This assumes all infected individuals are removed from the
population before the next time step

» Also that g is the probability of a non-infected person
coming into contact with and contracting the disease from
an infected individual



Epidemiology example - Prior layer

» The epidemiological process-layer model expresses the
disease dynamics up to a few unknown parameters

» The Bayesian model is completed using priors, say,

» Prior layer:

li ~ Poisson(\)
Si ~ Poisson(\g)
P, q beta(a, b)

2



When to stop adding layers?

» In the previous example a, b, \{ and )\, are fixed
» But we will have uncertainty about the correct value

» Maybe replace a fixed value with another layer, say
a ~ Uniform(0, 0)?

» Then maybe 6 ~ Exponential(¢), £ ~ Uniform(0, ), etc.

» Rule of thumb: Be careful assigning priors to parameters in
layers without replication.

» For example, even if we knew p exactly this would be just
one value and we couldn’t hope to estimate the
parameters of its beta distribution.



Directed acyclic graphs (DAGS)

>

>

A DAG is a graphical representation of a hierarchical model
DAGS sometimes go by the name Bayesian networks
Each observation and parameter is a node

An arrow for X to Y means that the conditional distribution
of Y depends on X

“Directed” means that arrows only go one way

Acyclic means there are no cycles, e.g.,

X=>Y—=2Z2—-X
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Epidemiology example - DAG
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Directed acyclic graphs (DAGS)

» Building models this way ensures we will always have a
valid joint distribution

» For example, say we need to specify the joint distribution of
(X,Y,2)

» Any joint distribution can be written as
f(X,Y,2Z2)=f(X)(Y|X)(Z]|X,Y)
» This is a fully-connected DAG
» Ad-hoc constructions like
f(X,Y,Z) = (X|2){(Y|X)F(Z|X,Y)

may or may not give a valid joint PDF
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Hierarchical models and MCMC

» Consider the classic one-way random effects model:
Yj ~N(6;,0%) and 6; ~ N(u,7%)

where Y is the j replicate for unit i and o = (y, 02, 72)
has an uninformative prior

» This hierarchy can be written using a directed acyclic graph

13/25



Random effects example - DAG
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Hierarchical models and MCMC

>

MCMC is efficient in this case even if the number of
parameter or levels of the hierarchy is large

You only need to consider “connected nodes” when you
update each parameter

For example, consider the random effect 61

pIL) Hf(Y,-,-e,-,#)] [waa)] ()
ij i=1

x Hf(yvm,fz)] 7(01]x)
L J

This only includes data for subject 1 and the prior for 61, so
our old normal/normal conjugacy rules apply

Each of these updates is a draw from a standard
one-dimensional normal or inverse gamma
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Random slopes model

» Let Yj; be the i observation for subject i

» As an example, consider the data plotted on the next slide
were Yj; is the bone density for child / at age X;.

» Here we might specify a different regression for each child
to capture variability over the population of children:

Yjj ~ Normal(yo; + X1, 0%)
» ~v; = (7i0,7i1)" controls the growth curve for child i

» These separate regression are tied together in the prior,
~; ~ Normal(3, ¥), which borrows strength across children

» This is a linear mixed model: ~; are random effects specific
to one child and 3 are fixed effects common to all children
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Bone height data
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Random slopes example - DAG
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Missing data models

v

We will deal with missing data in the linear regression
context, but the ideas apply to all models

The model is

v

Y; ~ Normal(Bo + 1 Xt + ... + BoXjp, o°)

v

Often either Y; or elements Xj; are missing

v

We will study separately the case of missing responses
and missing covariates
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Missing responses

>

If the response is missing this is essentially a prediction
problem

We have seen how to handle this in JAGS
We obtain samples from the PPD of Y;
At each MCMC iteration we simply draw

Yi ~ Normal(Bo + 1 Xi1 + ... + BpX; ,0%)

This distribution accounts for random error as well as
uncertainty in the model parameters

For the other updates the data are essentially complete

If only responses are missing, can we delete them for the
purpose of estimating 57
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Missing covariates

v

Now say all responses are observed, but a some
covariates are missing

v

The simplest approach is imputation, e.g., just plug in the
sample mean of the covariate for the missing values

v

This doesn’t account for uncertainty in the imputations

v

Bayesian methods handle this well using MCMC
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Missing covariates

» The main idea is to treat the missing values as unknown
parameters in the Bayesian model

» Unknown parameters need priors, so missing
X; = (X, ..., Xjp) T must have priors such as

X; ~ Normal(uy, X x)

» Assumptions about missing data:
» Missing status is independent of Y and X

» Covariates are Gaussian

» There are ways to relax both assumptions, but it becomes
complicated
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Missing covariates

» Of course if the prior is way off, the results will be invalid

» For example, if in reality the data are not missing at
random the Bayesian model will likely give bad results

» Example of non-random missingness:

» If specified correctly, the model will lead to inference for 3
that properly accounts for uncertainty about the missing
data
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Hierarchical linear regression model with missing data

> Yi|X;, 3,02 ~ Normal(X/ 3, 02)

v

Xilu, £ ~ Normal(p, ¥)

v

p(B) < 1

v

o2 ~ InvG(0.01,0.01)

v

1 ~ Normal(0, 1002/,)

v

Y ~ InvWishart(0.01,0.011,)

If some observations have missing Y and some have missing
X, can we delete those with missing Y? Can we delete those
with missing X?

24/25



Overview of the Gibbs sampling algorithm

» The full conditional of missing Y; is:

YiX;, 8, 0% ~ Normal(X/ 3, 0)
» The full conditional of missing X is:

The algebra is involved, but it has the same full conditional
formas 3

» In fact, all the full conditionals are conjugate
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Worked examples

The course website includes three complete data analyses of
hierarchical models

» Missing data analysis of 2016 Boston marathon data

» Analysis of tyrannosaurid growth curves

» Species distribution mapping via data fusion
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