
Chapter 2.2

Bayes’ Theorem
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Bayes’ Theorem

I In Bayesian statistics, we select the prior, π(θ), and the
likelihood, f (y |θ)

I Based on these two pieces of information, we must
compute the posterior p(θ|y)

I Bayes’ theorem is the mathematical formula to convert the
likelihood and prior to the posterior

I Bayes theorem:

p(θ|y) = f (y |θ)π(θ)
m(y)

I This holds for discrete (PMF) and continuous (PDF) cases
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Bayes’ theorem

I Bayes theorem in math:

p(θ|y) = f (y |θ)π(θ)
m(y)

I Bayes theorem in words:

p(θ|y) = Likelihood ∗ Prior
marginal distribution of Y

I As in the formula for a conditional distribution, m(y) is just
the normalizing constant required so that

∫
p(θ|y)dθ = 1

I Most of the time m(y) can be ignored because it doesn’t
depend on θ and the objective is to study the posterior of θ
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Derivation of Bayes’ theorem

I In lab this week you will prove the theorem

I It follows pretty quickly from the definition of conditional
probabilities

I As the proof shows, this is a general theorem about
probability that can be applied to non-Bayesian (football)
and Bayesian (HIV and Robins) problems
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Football example

I A team plays half its games at home, wins 70% of its home
games, and 40% of its road games. Given that the team
wins a game, what’s the probability it was a home game?
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Football example

I Denote the location as θ ∈ {H,R} and outcome as
Y ∈ {W ,L}

I The problem gives marginals
Prob(θ = H) = Prob(θ = R) = 0.5

I The problem gives conditionals Prob(Y = W |θ = H) = 0.7
and Prob(Y = W |θ = R) = 0.4

I Bayes’ theorem says

Prob(θ = H|Y = W ) =
Prob(W |H)Prob(H)

Prob(W )
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Football example
I We are given Prob(W |H) = 0.7 and Prob(H) = 0.5
I We must compute the marginal Prob(W )

Prob(Y = W ) =
∑
θ

f (θ,Y = W )

=
∑
θ

f (W |θ)f (θ)

= f (W |H)f (H) + f (W |R)f (R)

= 0.7 ∗ 0.5 + 0.4 ∗ 0.5 = 0.55

I Back to Bayes’ theorem:

Prob(H|W ) =
Prob(W |H)Prob(H)

Prob(H)

=
0.7 ∗ 0.5

0.55
= 0.64
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HIV example

I Let θ be the parameter of interest with

θ =

{
0 patient does not have HIV
1 patient has HIV

I The data is Y , defined as

Y =

{
0 test is negative
1 test is positive

I Objective: Derive the probability that the patient has HIV
given the test results

I That is, we want p(θ|y)

8 / 17



HIV example - Likelihood

I The likelihood describes the distribution of the data as if we
knew the parameters

I This is a statistical model for the data

I Since Y is binary, we use a Bernoulli PMF for the likelihood

I We must specify the likelihood for both θ = 0 and θ = 1

I Prob(Y = 1|θ = 0) = q0 is the false positive rate

I Prob(Y = 1|θ = 1) = q1 is the true positive rate

I How might we select q0 and q1?
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HIV example - Prior

I The prior represents our uncertainty about the parameters
before we observe the data

I Since θ is binary, we use a Bernoulli PMF for the prior

I Prob(θ = 1) = p is the population prevalence of HIV

I How might we select p?
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HIV example - Posterior

I Derive the posterior probability that the patient has HIV
given a positive test

I It can be shown that

Prob(θ = 1|Y = 1) =
q1p

q1p + q0(1− p)
.

I See “HIV” in the online derivations (same steps as for
football)
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HIV example - Posterior

I Derive the posterior probability that the patient has HIV
given a negative test

I It can be shown that

Prob(θ = 1|Y = 0) =
(1− q1)p

(1− q1)p + (1− q0)(1− p)
.
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Robins example

I Let X be the number of robins in the forest

I Let Y be the number of robins we observe

I Uniform prior: Prob(X = x) = 1/20 for x ∈ {0, ...,19}

I Likelihood: Y |X ∼ Binomial(X ,0.2) (0.2 is the detection
probability)

13 / 17



Robins example

I Given that and we do not observe any birds, what is the
probability that no birds are in the forest?

I Translation: What is Prob(X = 0|Y = 0)?

I Intuitively, how would this change if the prior was
Prob(X = x) = 1/100 for x ∈ {0, ...,99}

I Intuitively, how would this change if the detection
probability increased from 0.2 to 0.9?
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Joint PMF f (x , y)
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f (x , y) = f (y |x)fX (x) = dbinom(y , x ,0.2)(1/20)
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Robins example

I Bayes: Prob(X = x |Y = y) = Prob(Y=y |X=x)Prob(X=x)
Prob(Y=y)

I We know Prob(Y = y |X = x) =
(x

y

)
0.2y0.8x−y is the

binomial PMF

I We also know Prob(X = x) = 1/20 for all x

I Previously we found that Prob(Y = 0) = 1/20
∑19

x=0 0.8x

I Bayes: Prob(X = 0|Y = 0) = Prob(Y=0|X=0)Prob(X=0)
Prob(Y=0)

=

1∗(1/20)
1/20

∑19
x=0 0.8x = 0.202
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Robins example

I Intuitively, how would this change if the prior was
Prob(X = x) = 1/100 for x ∈ {0, ...,99}

It should decrease because the prior probability of X = 0
decreases (in fact it is 0.200)

I Intuitively, how would this change if the detection
probability increased from 0.2 to 0.9?

It should increase because with better detection probability
we can be more confident in our sample (in fact it is 0.900)
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