Chapter 2.2

Bayes' Theorem

Bayes' Theorem

- In Bayesian statistics, we select the prior, $\pi(\theta)$, and the likelihood, $f(y \mid \theta)$
- Based on these two pieces of information, we must compute the posterior $p(\theta \mid y)$
- Bayes' theorem is the mathematical formula to convert the likelihood and prior to the posterior
- Bayes theorem:

$$
p(\theta \mid y)=\frac{f(y \mid \theta) \pi(\theta)}{m(y)}
$$

- This holds for discrete (PMF) and continuous (PDF) cases

Bayes' theorem

- Bayes theorem in math:

$$
p(\theta \mid y)=\frac{f(y \mid \theta) \pi(\theta)}{m(y)}
$$

- Bayes theorem in words:

$$
p(\theta \mid y)=\frac{\text { Likelihood } * \text { Prior }}{\text { marginal distribution of } Y}
$$

- As in the formula for a conditional distribution, $m(y)$ is just the normalizing constant required so that $\int p(\theta \mid y) d \theta=1$
- Most of the time $m(y)$ can be ignored because it doesn't depend on θ and the objective is to study the posterior of θ

Derivation of Bayes' theorem

- In lab this week you will prove the theorem
- It follows pretty quickly from the definition of conditional probabilities
- As the proof shows, this is a general theorem about probability that can be applied to non-Bayesian (football) and Bayesian (HIV and Robins) problems

Football example

- A team plays half its games at home, wins 70% of its home games, and 40% of its road games. Given that the team wins a game, what's the probability it was a home game?

Football example

- Denote the location as $\theta \in\{H, R\}$ and outcome as $Y \in\{W, L\}$
- The problem gives marginals $\operatorname{Prob}(\theta=H)=\operatorname{Prob}(\theta=R)=0.5$
- The problem gives conditionals $\operatorname{Prob}(Y=W \mid \theta=H)=0.7$ and $\operatorname{Prob}(Y=W \mid \theta=R)=0.4$
- Bayes' theorem says

$$
\operatorname{Prob}(\theta=H \mid Y=W)=\frac{\operatorname{Prob}(W \mid H) \operatorname{Prob}(H)}{\operatorname{Prob}(W)}
$$

Football example

- We are given $\operatorname{Prob}(W \mid H)=0.7$ and $\operatorname{Prob}(H)=0.5$
- We must compute the marginal $\operatorname{Prob}(W)$

$$
\begin{aligned}
\operatorname{Prob}(Y=W) & =\sum_{\theta} f(\theta, Y=W) \\
& =\sum_{\theta} f(W \mid \theta) f(\theta) \\
& =f(W \mid H) f(H)+f(W \mid R) f(R) \\
& =0.7 * 0.5+0.4 * 0.5=0.55
\end{aligned}
$$

- Back to Bayes' theorem:

$$
\begin{aligned}
\operatorname{Prob}(H \mid W) & =\frac{\operatorname{Prob}(W \mid H) \operatorname{Prob}(H)}{\operatorname{Prob}(H)} \\
& =\frac{0.7 * 0.5}{0.55}=0.64
\end{aligned}
$$

HIV example

- Let θ be the parameter of interest with

$$
\theta= \begin{cases}0 & \text { patient does not have HIV } \\ 1 & \text { patient has HIV }\end{cases}
$$

- The data is Y, defined as

$$
Y= \begin{cases}0 & \text { test is negative } \\ 1 & \text { test is positive }\end{cases}
$$

- Objective: Derive the probability that the patient has HIV given the test results
- That is, we want $p(\theta \mid y)$

HIV example - Likelihood

- The likelihood describes the distribution of the data as if we knew the parameters
- This is a statistical model for the data
- Since Y is binary, we use a Bernoulli PMF for the likelihood
- We must specify the likelihood for both $\theta=0$ and $\theta=1$
- $\operatorname{Prob}(Y=1 \mid \theta=0)=q_{0}$ is the false positive rate
- $\operatorname{Prob}(Y=1 \mid \theta=1)=q_{1}$ is the true positive rate
- How might we select q_{0} and q_{1} ?

HIV example - Prior

- The prior represents our uncertainty about the parameters before we observe the data
- Since θ is binary, we use a Bernoulli PMF for the prior
- $\operatorname{Prob}(\theta=1)=p$ is the population prevalence of HIV
- How might we select p ?

HIV example - Posterior

- Derive the posterior probability that the patient has HIV given a positive test
- It can be shown that

$$
\operatorname{Prob}(\theta=1 \mid Y=1)=\frac{q_{1} p}{q_{1} p+q_{0}(1-p)}
$$

- See "HIV" in the online derivations (same steps as for football)

HIV example - Posterior

- Derive the posterior probability that the patient has HIV given a negative test
- It can be shown that

$$
\operatorname{Prob}(\theta=1 \mid Y=0)=\frac{\left(1-q_{1}\right) p}{\left(1-q_{1}\right) p+\left(1-q_{0}\right)(1-p)}
$$

Robins example

- Let X be the number of robins in the forest
- Let Y be the number of robins we observe
- Uniform prior: $\operatorname{Prob}(X=x)=1 / 20$ for $x \in\{0, \ldots, 19\}$
- Likelihood: $Y \mid X \sim \operatorname{Binomial}(X, 0.2)$ (0.2 is the detection probability)

Robins example

- Given that and we do not observe any birds, what is the probability that no birds are in the forest?
- Translation: What is $\operatorname{Prob}(X=0 \mid Y=0)$?
- Intuitively, how would this change if the prior was $\operatorname{Prob}(X=x)=1 / 100$ for $x \in\{0, \ldots, 99\}$
- Intuitively, how would this change if the detection probability increased from 0.2 to 0.9 ?

Joint PMF $f(x, y)$

$$
f(x, y)=f(y \mid x) f_{X}(x)=\operatorname{dbinom}(y, x, 0.2)(1 / 20)
$$

Robins example

- Bayes: $\operatorname{Prob}(X=x \mid Y=y)=\frac{\operatorname{Prob}(Y=y \mid X=x) \operatorname{Prob}(X=x)}{\operatorname{Prob}(Y=y)}$
- We know $\operatorname{Prob}(Y=y \mid X=x)=\binom{x}{y} 0.2^{y} 0.8^{x-y}$ is the binomial PMF
- We also know $\operatorname{Prob}(X=x)=1 / 20$ for all x
- Previously we found that $\operatorname{Prob}(Y=0)=1 / 20 \sum_{x=0}^{19} 0.8^{x}$
- Bayes: $\operatorname{Prob}(X=0 \mid Y=0)=\frac{\operatorname{Prob}(Y=0 \mid X=0) \operatorname{Prob}(X=0)}{\operatorname{Prob}(Y=0)}=$ $\frac{1 *(1 / 20)}{1 / 20 \sum_{x=0}^{19} 0.8^{x}}=0.202$

Robins example

- Intuitively, how would this change if the prior was $\operatorname{Prob}(X=x)=1 / 100$ for $x \in\{0, \ldots, 99\}$

It should decrease because the prior probability of $X=0$ decreases (in fact it is 0.200)

- Intuitively, how would this change if the detection probability increased from 0.2 to 0.9 ?

It should increase because with better detection probability we can be more confident in our sample (in fact it is 0.900)

