
Chapter 4.1–4.2

Bayesian linear models
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Linear regression

I Linear regression is by far the most common statistical
model

I It includes as special cases the t-test and ANOVA

I The multiple linear regression model is

Yi ∼ Normal(β0 + Xi1β1 + ...+ Xipβp, σ
2)

independently across the i = 1, ...,n observations

I As we’ll see, Bayesian and classical linear regression are
similar if n >> p and the priors are uninformative.

I However, the results can be different for challenging
problems, and the interpretation is different in all cases
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Outline of Chapter 4

I Bayesian t-tests
I Bayesian linear regression

I Gaussian priors
I Jeffreys’ priors
I Shrinkage priors

I Generalized linear models
I Random effects
I Flexible linear models

I Non-linear regression
I Heteroskedastic errors
I Non-Gaussian errors
I Correlated errors
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Bayesian one-sample (i.e., paired) t-test

I Say Y1, ...,Yn ∼ Normal(µ, σ2)

I Typically Yi is the difference of a pair of measurements,
e.g., the post- minus pre-test for subject i

I Therefore the interest is to compare µ to zero

I We will consider two cases: σ2 known and σ2 unknown

4 / 26



Bayesian one-sample (i.e., paired) t-test
I Under the Jeffreys’ prior π(µ) = 1 with fixed σ,

µ|Y, σ ∼ Normal
(

Ȳ ,
σ2

n

)
I Therefore the posterior mean is the sample mean,

E(µ|Y) = Ȳ

I The 95% credible set is the 95% confidence interval

Ȳ ± 1.96
σ√
n

I For the test of H0 : µ ≤ 0 versus H1 : µ > 0,

Prob(H0|Y) = Prob(µ ≤ 0|Y) = Φ(
√

nȲ/σ)

is the frequentist p-value
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Bayesian one-sample (i.e., paired) t-test

I When σ2 is unknown, the Jeffreys’ prior is

π(µ, σ2) ∝
(

1
σ2

)3/2

I The marginal posterior integrating over uncertainty in σ2 is

µ|Y ∼ tn

(
Ȳ ,

σ̂2

n

)
where σ̂2 =

∑n
i=1(Yi − Ȳ )2/n

I This is very similar to the frequentist t-test, except that the
degrees of freedom is n rather than n − 1

I This is the effect of the prior
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Bayesian two-sample t-test

I Say the n1 observations from group 1 are

Yi ∼ Normal(µ, σ2)

are the n2 observations from group 2 are

Yi ∼ Normal(µ+ δ, σ2)

I The goal is to compare δ to zero

I With σ2 known and Jeffrey’s prior π(µ, δ) = 1,

δ|Y, σ2 ∼ Normal
(

Ȳ2 − Ȳ1,
σ2

n1
+
σ2

n2

)
and the results are identical to the two-sample z-test
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Bayesian two-sample t-test
I When σ2 is unknown, the Jeffreys’ prior is

π(µ, δ, σ2) ∝
(

1
σ2

)2

I The marginal posterior integrating over uncertainty in σ2

and µ is

δ|Y ∼ tn

(
Ȳ2 − Ȳ1,

σ̂2

n1
+
σ̂2

n2

)
where the pooled variance estimator is

σ̂2 =

 n1∑
i=1

(Yi − Ȳ1)2 +

n2∑
i=n1+1

(Yi − Ȳ2)2

 /n
I This is very similar to the frequentist t-test, except that the

degrees of freedom is n = n1 + n2 rather than n − 2
I This is the effect of the prior
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Review of least squares

I The least squares estimate of β = (β0, β1, ..., βp)T is

β̂OLS = argmin
β

n∑
i=1

(Yi − µi)
2

where µi = β0 + Xi1β1 + ...+ Xipβp

I β̂OLS is unbiased even if the errors are non-Gaussian

I If the errors are Gaussian then the likelihood is
proportional to

n∏
i=1

exp

[
−(Yi − µi)

2

2σ2

]
= exp

[
−
∑n

i=1(Yi − µi)
2

2σ2

]

I Therefore, if the errors are Gaussian β̂OLS is also the MLE
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Review of least squares

I Linear regression is often simpler to describe using linear
algebra notation

I Let Y = (Y1, ...,Yn)T be the response vector and X be the
n × (p + 1) matrix of covariates

I Then the mean of Y is Xβ and the least squares solution is

β̂OLS = argmin
β

(Y− Xβ)T (Y− Xβ) = (XT X)−1XT Y

I If the errors are Gaussian then the sampling distribution is

β̂OLS ∼ Normal
[
β, σ2(XT X)−1

]
I If the variance σ2 is estimated using the mean squared

residual error then the sampling distribution is multivariate t
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Bayesian regression

I The likelihood remains

Yi ∼ Normal(β0 + Xi1β1 + ...+ Xipβp, σ
2)

independent for i = 1, ...,n observations

I As with a least squares analysis, it is crucial to verify this is
appropriate using qq-plots, added variable plots, etc.

I A Bayesian analysis also requires priors for β and σ

I We will focus on prior specification since this piece is
uniquely Bayesian.
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Priors

I For the purpose of setting priors, it is helpful to standardize
both the response and each covariate to have mean zero
and variance one.

I Many priors for β have been considered:
1. Improper priors

2. Gaussian priors

3. Double exponential priors

4. Many, many more...
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Improper priors

I With σ fixed, the Jeffreys’ prior is flat p(β) = 1

I This is improper, but the posterior is proper under the
same conditions required by least squares

I If σ is known then

β|Y ∼ Normal
[
β̂OLS, σ

2(XT X)−1
]

I See “Post beta” in the online derivations

I Therefore, the results should be similar to least squares

I How are they different?
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Improper priors

I Of course we rarely know σ

I A conjugate uninformative prior is

σ2 ∼ InvGamma(a,b)

with a and b set to be small, say a = b = 0.01.

I In this case the posterior of β follows a multivariate t
centered on β̂OLS

I Again, the results are similar to OLS
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Improper priors

I The objective Bayes Jeffreys prior is

p(β, σ2) =

(
1
σ2

)p/2+1

which is the inverse gamma prior with a = p/2 and b → 0

I This gives posterior (marginal over σ2)

β|Y ∼ tn
(
β̂OLS, σ̂

2(XT X)−1
)

where σ̂2 = (Y− Xβ̂OLS)T (Y− Xβ̂OLS)/n

I The posterior is proper in the same situations that the least
squares solution exists
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Multivariate normal prior

I Another common prior for is Zellner’s g-prior

β ∼ Normal
[
0,
σ2

g
(XT X)−1

]
I This prior is proper assuming X is full rank

I The posterior mean is

1
1 + g

β̂OLS

I This shrinks the least estimate towards zero

I g controls the amount of shrinkage

I g = 1/n is common, and called the unit information prior
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Univariate Gaussian priors

I If there are many covariates or the covariates are collinear,
then β̂OLS is unstable

I Independent priors can counteract collinearity

βj ∼ Normal(0, σ2/g)

independent over j

I The posterior mode is

argmin
β

n∑
i=1

(Yi − µi)
2 + g

p∑
j=1

β2
j

I In classical statistics, this is known as the ridge regression
solution and is used to stabilize the least squares solution
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BLASSO

I An increasingly-popular prior is the double exponential or
Bayesian LASSO prior

I The prior is βj ∼ DE(τ) which has PDF

f (β) ∝ exp

(
−|β|
τ

)
I The square in the Gaussian prior is replaced with an

absolute value

I The shape of the PDF is thus more peaked at zero (next
slide)

I The BLASSO prior favors settings where there are many βj
near zero and a few large βj

I That is, p is large but most of the covariates are noise
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BLASSO
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BLASSO

I The posterior mode is

argmin
β

n∑
i=1

(Yi − µi)
2 + g

p∑
j=1

|βj |

I In classical statistics, this is known as the LASSO solution

I It is popular because it adds stability by shrinking estimates
towards zero, and also sets some coefficients to zero

I Covariates with coefficients set to zero can be removed

I Therefore, LASSO performs variables selection and
estimation simultaneously
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Computing

I With flat or Gaussian (with fixed prior variance) priors the
posterior is available in closed-form and Monte Carlo
sampling is not needed

I JAGS also works well, but there are R (and SAS and
others) packages dedicated just to Bayesian linear
regression that are preferred for big/hard problems

I BLR is probably the most common
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Computing for the BLASSO

I For the BLASSO prior the full conditionals are more
complicated

I There is a trick to make all full conditional conjugate so that
Gibbs sampling can be used

I Metropolis sampling works fine too

I BLR works well for BLASSO and is super fast
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Summarizing the results

I The standard summary is a table with marginal means and
95% intervals for each βj

I This becomes unwieldy for large p

I Picking a subset of covariates is a crucial step in a linear
regression analysis.

I We will discuss this later in the course.

I Common methods include cross-validation, information
criteria, and stochastic search.
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Predictions

I Say we have a new covariate vector Xnew and we would
like to predict the corresponding response Ynew

I A plug-in approach would fix β and σ at their posterior
means β̂ and σ̂ to make predictions

Ynew |β̂, σ̂ ∼ Normal(Xnew β̂, σ̂
2)

I However this plug-in approach suppresses uncertainty
about β and σ

I Therefore these prediction intervals will be slightly too
narrow leading to undercoverage
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Posterior predicitive distribution (PPD)

I We should really account for all uncertainty when making
predictions, including our uncertainty about β and σ

I We really want the PPD

p(Ynew |Y) =

∫
f (Ynew ,β, σ|Y)dβdσ

=

∫
f (Ynew |β, σ)f (β, σ|Y)dβdσ

I Marginalizing over the model parameters accounts for their
uncertainty

I The concept of the PPD applies generally (e.g., logistic
regression) and means the distribution of the predicted
value marginally over model parameters
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Posterior predicitive distribution (PPD)

I MCMC naturally gives draws from Ynew ’s PPD

I For MCMC iteration t we have β(t) and σ(t)

I For MCMC iteration t we sample

Y (t)
new ∼ Normal(Xβ(t), σ(t)2

)

I Y (1)
new , ...,Y

(S)
new are samples from the PPD

I This is an example of the claim that “Bayesian methods
naturally quantify uncertainty”
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