Chapter 4.1–4.2

Bayesian linear models

Linear regression

- Linear regression is by far the most common statistical model
- It includes as special cases the t-test and ANOVA
- The multiple linear regression model is

$$Y_i \sim \text{Normal}(\beta_0 + X_{i1}\beta_1 + ... + X_{ip}\beta_p, \sigma^2)$$

independently across the i = 1, ..., n observations

- As we'll see, Bayesian and classical linear regression are similar if n >> p and the priors are uninformative.
- However, the results can be different for challenging problems, and the interpretation is different in all cases

Outline of Chapter 4

- Bayesian t-tests
- Bayesian linear regression
 - Gaussian priors
 - Jeffreys' priors
 - Shrinkage priors
- Generalized linear models
- Random effects
- Flexible linear models
 - Non-linear regression
 - Heteroskedastic errors
 - Non-Gaussian errors
 - Correlated errors

Bayesian one-sample (i.e., paired) t-test

Say
$$Y_1, ..., Y_n \sim \text{Normal}(\mu, \sigma^2)$$

Typically Y_i is the difference of a pair of measurements, e.g., the post- minus pre-test for subject i

• Therefore the interest is to compare μ to zero

• We will consider two cases: σ^2 known and σ^2 unknown

Bayesian one-sample (i.e., paired) t-test

• Under the Jeffreys' prior $\pi(\mu) = 1$ with fixed σ ,

$$\mu | \mathbf{Y}, \sigma \sim \mathsf{Normal}\left(ar{\mathbf{Y}}, rac{\sigma^2}{n}
ight)$$

Therefore the posterior mean is the sample mean,

 $\mathsf{E}(\mu|\mathbf{Y}) = \bar{\mathbf{Y}}$

The 95% credible set is the 95% confidence interval

$$ar{Y} \pm 1.96 rac{\sigma}{\sqrt{n}}$$

For the test of $\mathcal{H}_0: \mu \leq 0$ versus $\mathcal{H}_1: \mu > 0$,

 $\mathsf{Prob}(\mathcal{H}_0|\mathbf{Y}) = \mathsf{Prob}(\mu \le 0|\mathbf{Y}) = \Phi(\sqrt{n}\bar{\mathbf{Y}}/\sigma)$

is the frequentist p-value

Bayesian one-sample (i.e., paired) t-test

• When σ^2 is unknown, the Jeffreys' prior is

$$\pi(\mu, \sigma^2) \propto \left(\frac{1}{\sigma^2}\right)^{3/2}$$

• The marginal posterior integrating over uncertainty in σ^2 is

$$\mu | \mathbf{Y} \sim t_n \left(\bar{\mathbf{Y}}, \frac{\hat{\sigma}^2}{n} \right)$$

where $\hat{\sigma}^2 = \sum_{i=1}^n (Y_i - \bar{Y})^2 / n$

- ► This is very similar to the frequentist t-test, except that the degrees of freedom is n rather than n 1
- This is the effect of the prior

Bayesian two-sample t-test

▶ Say the *n*₁ observations from group 1 are

 $Y_i \sim \text{Normal}(\mu, \sigma^2)$

are the n₂ observations from group 2 are

 $Y_i \sim \text{Normal}(\mu + \delta, \sigma^2)$

- The goal is to compare δ to zero
- With σ^2 known and Jeffrey's prior $\pi(\mu, \delta) = 1$,

$$\delta |\mathbf{Y}, \sigma^2 \sim \mathsf{Normal}\left(\bar{Y}_2 - \bar{Y}_1, \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}\right)$$

and the results are identical to the two-sample z-test

Bayesian two-sample t-test

• When σ^2 is unknown, the Jeffreys' prior is

$$\pi(\mu, \delta, \sigma^2) \propto \left(\frac{1}{\sigma^2}\right)^2$$

The marginal posterior integrating over uncertainty in σ² and μ is

$$\delta |\mathbf{Y} \sim t_n \left(\bar{Y}_2 - \bar{Y}_1, \frac{\hat{\sigma}^2}{n_1} + \frac{\hat{\sigma}^2}{n_2} \right)$$

where the pooled variance estimator is

$$\hat{\sigma}^2 = \left[\sum_{i=1}^{n_1} (Y_i - \bar{Y}_1)^2 + \sum_{i=n_1+1}^{n_2} (Y_i - \bar{Y}_2)^2\right] / n$$

- ► This is very similar to the frequentist t-test, except that the degrees of freedom is n = n₁ + n₂ rather than n − 2
- This is the effect of the prior

Review of least squares

• The least squares estimate of $\beta = (\beta_0, \beta_1, ..., \beta_p)^T$ is

$$\hat{\boldsymbol{\beta}}_{OLS} = \operatorname{argmin}_{\boldsymbol{\beta}} \sum_{i=1}^{n} (Y_i - \mu_i)^2$$

where $\mu_i = \beta_0 + X_{i1}\beta_1 + ... + X_{ip}\beta_p$

- $\hat{\beta}_{OLS}$ is unbiased even if the errors are non-Gaussian
- If the errors are Gaussian then the likelihood is proportional to

$$\prod_{i=1}^{n} \exp\left[-\frac{(Y_i - \mu_i)^2}{2\sigma^2}\right] = \exp\left[-\frac{\sum_{i=1}^{n} (Y_i - \mu_i)^2}{2\sigma^2}\right]$$

• Therefore, if the errors are Gaussian $\hat{\beta}_{OLS}$ is also the MLE

Review of least squares

- Linear regression is often simpler to describe using linear algebra notation
- Let $\mathbf{Y} = (Y_1, ..., Y_n)^T$ be the response vector and \mathbf{X} be the $n \times (p + 1)$ matrix of covariates
- Then the mean of **Y** is $X\beta$ and the least squares solution is

$$\hat{eta}_{OLS} = \operatorname*{argmin}_{eta} (\mathbf{Y} - \mathbf{X}eta)^{ op} (\mathbf{Y} - \mathbf{X}eta) = (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{X}^{ op} \mathbf{Y}$$

If the errors are Gaussian then the sampling distribution is

$$\hat{\boldsymbol{\beta}}_{OLS} \sim \operatorname{Normal}\left[\boldsymbol{\beta}, \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}\right]$$

If the variance σ² is estimated using the mean squared residual error then the sampling distribution is multivariate t

Bayesian regression

The likelihood remains

```
Y_i \sim \text{Normal}(\beta_0 + X_{i1}\beta_1 + ... + X_{ip}\beta_p, \sigma^2)
```

independent for i = 1, ..., n observations

- As with a least squares analysis, it is crucial to verify this is appropriate using qq-plots, added variable plots, etc.
- A Bayesian analysis also requires priors for β and σ
- We will focus on prior specification since this piece is uniquely Bayesian.

Priors

- For the purpose of setting priors, it is helpful to standardize both the response and each covariate to have mean zero and variance one.
- Many priors for β have been considered:
 - 1. Improper priors
 - 2. Gaussian priors
 - 3. Double exponential priors
 - 4. Many, many more...

Improper priors

- With σ fixed, the Jeffreys' prior is flat $p(\beta) = 1$
- This is improper, but the posterior is proper under the same conditions required by least squares

• If σ is known then

$$\boldsymbol{\beta} | \mathbf{Y} \sim \text{Normal} \left[\hat{\boldsymbol{\beta}}_{OLS}, \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1} \right]$$

- See "Post beta" in the online derivations
- Therefore, the results should be similar to least squares
- How are they different?

Improper priors

- Of course we rarely know σ
- A conjugate uninformative prior is

 $\sigma^2 \sim \text{InvGamma}(a, b)$

with *a* and *b* set to be small, say a = b = 0.01.

- In this case the posterior of β follows a multivariate t centered on β̂_{OLS}
- Again, the results are similar to OLS

Improper priors

The objective Bayes Jeffreys prior is

$$p(\boldsymbol{eta},\sigma^2) = \left(rac{1}{\sigma^2}
ight)^{p/2+2}$$

which is the inverse gamma prior with a = p/2 and $b \rightarrow 0$

• This gives posterior (marginal over σ^2)

$$oldsymbol{eta} | \mathbf{Y} \sim \mathrm{t}_n \left(\hat{oldsymbol{eta}}_{OLS}, \hat{\sigma}^2 (\mathbf{X}^T \mathbf{X})^{-1}
ight)$$

where $\hat{\sigma}^2 = (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}_{OLS})^T (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}_{OLS})/n$

The posterior is proper in the same situations that the least squares solution exists

Multivariate normal prior

Another common prior for is Zellner's g-prior

$$oldsymbol{eta} \sim \mathsf{Normal}\left[0, rac{\sigma^2}{g} (\mathbf{X}^T \mathbf{X})^{-1}
ight]$$

- This prior is proper assuming X is full rank
- The posterior mean is

$$rac{1}{1+g} \hat{eta}_{OLS}$$

- This shrinks the least estimate towards zero
- ► g controls the amount of shrinkage
- g = 1/n is common, and called the unit information prior

Univariate Gaussian priors

- ► If there are many covariates or the covariates are collinear, then $\hat{\beta}_{OLS}$ is unstable
- Independent priors can counteract collinearity

$$\beta_j \sim \operatorname{Normal}(0, \sigma^2/g)$$

independent over j

The posterior mode is

$$\underset{\boldsymbol{\beta}}{\operatorname{argmin}} \sum_{i=1}^{n} (Y_i - \mu_i)^2 + g \sum_{j=1}^{p} \beta_j^2$$

In classical statistics, this is known as the ridge regression solution and is used to stabilize the least squares solution

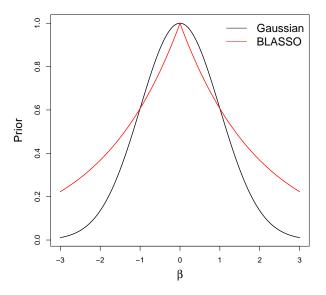
BLASSO

- An increasingly-popular prior is the double exponential or Bayesian LASSO prior
- The prior is $\beta_i \sim \mathsf{DE}(\tau)$ which has PDF

$$f(eta) \propto \exp\left(-rac{|eta|}{ au}
ight)$$

- The square in the Gaussian prior is replaced with an absolute value
- The shape of the PDF is thus more peaked at zero (next slide)
- The BLASSO prior favors settings where there are many β_j near zero and a few large β_j
- That is, p is large but most of the covariates are noise

BLASSO



BLASSO

The posterior mode is

$$\underset{\beta}{\operatorname{argmin}}\sum_{i=1}^{n}(Y_{i}-\mu_{i})^{2}+g\sum_{j=1}^{p}|\beta_{j}|$$

- In classical statistics, this is known as the LASSO solution
- It is popular because it adds stability by shrinking estimates towards zero, and also sets some coefficients to zero
- Covariates with coefficients set to zero can be removed
- Therefore, LASSO performs variables selection and estimation simultaneously

Computing

With flat or Gaussian (with fixed prior variance) priors the posterior is available in closed-form and Monte Carlo sampling is not needed

 JAGS also works well, but there are R (and SAS and others) packages dedicated just to Bayesian linear regression that are preferred for big/hard problems

BLR is probably the most common

Computing for the BLASSO

 For the BLASSO prior the full conditionals are more complicated

There is a trick to make all full conditional conjugate so that Gibbs sampling can be used

- Metropolis sampling works fine too
- BLR works well for BLASSO and is super fast

Summarizing the results

- The standard summary is a table with marginal means and 95% intervals for each β_i
- This becomes unwieldy for large p
- Picking a subset of covariates is a crucial step in a linear regression analysis.
- We will discuss this later in the course.
- Common methods include cross-validation, information criteria, and stochastic search.

Predictions

- Say we have a new covariate vector X_{new} and we would like to predict the corresponding response Y_{new}
- A plug-in approach would fix β and σ at their posterior means β and ô to make predictions

$$Y_{new}|\hat{oldsymbol{eta}},\hat{\sigma}\sim \mathsf{Normal}(\mathbf{X}_{new}\hat{oldsymbol{eta}},\hat{\sigma}^2)$$

- However this plug-in approach suppresses uncertainty about β and σ
- Therefore these prediction intervals will be slightly too narrow leading to undercoverage

Posterior predicitive distribution (PPD)

- We should really account for all uncertainty when making predictions, including our uncertainty about β and σ
- We really want the PPD

$$p(Y_{new}|\mathbf{Y}) = \int f(Y_{new}, \beta, \sigma | \mathbf{Y}) d\beta d\sigma$$
$$= \int f(Y_{new}|\beta, \sigma) f(\beta, \sigma | \mathbf{Y}) d\beta d\sigma$$

- Marginalizing over the model parameters accounts for their uncertainty
- The concept of the PPD applies generally (e.g., logistic regression) and means the distribution of the predicted value marginally over model parameters

Posterior predicitive distribution (PPD)

- MCMC naturally gives draws from Y_{new}'s PPD
 - For MCMC iteration *t* we have $\beta^{(t)}$ and $\sigma^{(t)}$
 - ▶ For MCMC iteration *t* we sample

$$Y_{new}^{(t)} \sim \text{Normal}(\mathbf{X}\beta^{(t)}, {\sigma^{(t)}}^2)$$

• $Y_{new}^{(1)}, ..., Y_{new}^{(S)}$ are samples from the PPD

This is an example of the claim that "Bayesian methods naturally quantify uncertainty"