Chapter 1.4

Summarizing a posterior



Summarizing a univariate posterior

» After selecting the likelihood and prior, all that remains is to
summarize the posterior

» Say there is a single parameter, 6

» For example, we say the model is

Likelihood: Y|6 ~ Binomial(N, 0)
Prior: 6 ~ Uniform(0, 1)

» We saw that the posterior is then
0|Y ~Beta(Y+a,N—Y+b)

» The posterior is a distribution that can be plotted as on the
next slide
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Summarizing a univariate posterior

v

A plot of the posterior tells the whole story

v

However, to be more concise we typically use a few
numerical summaries of the distribution

v

This is particularly important when there are many
parameters

v

The posterior can be summarized like any other
distribution, by say the mean, variance, skewness, etc.



Point estimators

» A point estimator is a one number summary used to
estimate the unknown parameter

» For example, we might use the posterior mean (or median)
as the “best guess” of 6

» The posterior mean is

0=E(@0]Y) = /0p(9|Y)d0

> For the Beta/Binomial example § = ;Y+2;

» This is an alternative to the sample proportion 8 = Y/n

» Estimators usually wear hats



MAP estimator

» The posterior mode is the called the maximum a posteriori
(MAP) estimator

» The MAP estimator is

0 = argmaxp(0]Y)
0

» Maximizing the log of the posterior is equivalent and
easier, so we will usually use this for computation

» The MAP estimator is

0= arg;nax log[p(0]Y)] = argénax log[f(Y|0)] + log[m(0)]

» If the prior is uniform (i.e., flat) the MAP is the MLE

» The MAP is easier to compute than the posterior mean



MAP estimator
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MAP estimator

Assuming Y|0 ~ Binomial(n,0) and =(0) = 1, find the MAP
estimator of 6

v

The likelihood is f(Y|0) = (})07 (1 — )"
The log likelihood is

v

log[f(Y|0)] = log KC)} + Ylog(6) + (n— Y)log(1 — 0)

v

The prior is 7(0) = 1

v

The log prior is log[7(0)] = 0

v

Therefore, the MAP estimator is

0 = arg maxog[p(] )] = log KC)} +Y log(6)+(n—Y) log(1-0)



MAP estimator

Assuming Y|0 ~ Binomial(n, §) and =(0) = 1, find the MAP
estimator of 6

» To find the MAP estimator we take a derivative, set it so
zero and solve

> gy loalp(o|Y)] = § — 357 =0
» Solving for 9 gives the MAP estimator is = Y/n

» This is the sample proportion, which is also the MLE



Uncertainty measures

» Sometimes a point estimate is sufficient, but more often we
need to quantify uncertainty

» The posterior standard deviation is one measure of
uncertainty

» If the posterior is approximately normal, then the mean
plus/minus two standard deviation units captures 95% of
the posterior probability

» The posterior standard deviation is analogous to but
fundamentally different than the frequentist standard error

» The standard error is the standard deviation of ’s
sampling distribution
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Uncertainty measures

—— Post mean
2 4 —— MN+-2SD
o
N
2 o |
0 N
5
©
8
g 3
8
a
o
—

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

0.0
|

In this beta/binomial example Y =8, N=10anda=b =1

11/37



Credible intervals

» In addition to standard error, uncertainty can be quantified
using a credible interval

» The interval (/,u) is a 100(1 — «a))% posterior credible
interval/set if

Prob(/ < <ulY)=1-«

» Interpretation of a 95% credible interval: “given the data
and prior, | am 95% certain that ¢ is between / and uv”

» This is analogous but different than a confidence interval
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Credible intervals

» Credible sets are not unique

v

Let g, be the 7 quantile of the posterior so that

Prob(§ < g-|Y) =1

v

Then (o.00; 90.95), (90.01- Go.96), etc. are all valid 95%
credible sets

v

The equal-tailed interval is (q./2, G1—a/2)

v

The highest posterior density interval searches for the
smallest interval that contains the proper probability

13/37



Credible intervals
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Hypothesis testing

» Hypothesis tests are conducted by simply computing the
posterior probability of each hypothesis

» Say the null hypothesis is H : < 0.5 and the alternative
isHi:0>05

» The posterior probability of the null hypothesis is
0.5
Prob(# < 0.5|Y) = p(0|Y)do
0
» We reject the null if its probability is small

» In a Bayesian analysis we can say “Given the data and
prior the probability that the null hypothesis is true is 0.02”

» This is analogous to but different than the p-value
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Hypothesis testing

Data

<= 8; n <= 10

The posterior is theta]|Y~Beta (A, B)
<- Y+1; B <- n-Y+1

Posterior mean

A/ (A+B)

1] 0.75

> # Posterior standard deviation

> sqrt (AxB/ ( (A+B) * (A+B) x (A+B+1)))

[1] 0.1200961

> # Posterior 95% credible interval

> gbeta(c(0.025,0.975),A,B)

[1] 0.4822441 0.9397823

> # Posterior probability that theta<0.5
> pbeta(0.5,A,B)

[1] 0.03271484

HH= P oFH K H

>
>
>
>
>
>
(
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Monte Carlo approximations

» Monte Carlo (MC) sampling is a useful tool for
summarizing a posterior

» For univariate cases is it not particularly useful, but in
harder problems is the best approach available

» In MC sampling we draw S samples from the posterior,
oM, ....00%) ~ p(d]Y)

and use these samples to approximate the posterior

» For example, the posterior mean and variance are
approximated by the sample mean and variance of the 9(5)
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Monte Carlo approximations

» MC sampling facilitates studying transformations of
parameters

» For example, the odds corresponding to 6 are v = 6/(1 —6)
» How to approximate the posterior mean and variance of ~v?

» We simply transform each draw to the odds

Q0] 8) _ o(S)

() — 0
1o 7 1609

v

and use these draws to approximate ~’s posterior
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Monte Carlo approximations

Data

<= 8; n <= 10

The posterior is theta]|Y~Beta (A, B)
<— Y+1; B <- n-Y+1

HH= P oFH K H

>
>
>
>
> MC sampling

> theta <- rbeta(100000,A,B)

> # Approximate the posterior mean and SD
> mean (theta) ; sd(theta)

[1] 0.749792

[1] 0.1201799

> # Transform to odds

> gamma <- theta/ (l-theta)

> # Approximate the posterior mean and SD
> mean (gamma) ; sd (gamma)

[1] 4.483378

[1] 4.720541
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Summarizing multivariate posteriors

» A univariate posterior is captured by simple plot

v

When there are many parameters this is impossible

v

Say 6 = (61, ...,0p)

v

Ideally we reduce to the univariate marginal posteriors

p(91|v):/.../p(91,...,9,,|Y)d92,...,dep

v

The same ideas we used for univariate models then apply

v

However, computing these integrals is often challenging
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Bayesian one-sample t-test

v

In this section we will study the one-sample t-test in depth

v

Likelihood: Y;|u, o ~ N(u, o?) independent over i =1,....n

v

Priors: y ~ N(uo, 03) independent of 02 ~ InvGamma(a, b)

v

The joint (bivariate PDF) of (u, 0?) is proportional to

{orenp |- ZmmtE | g [ B0 (o201 g 2

202 203

v

How to summarize this complicated function?
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Plotting the posterior on a grid

» For models with only a few parameters we could simply
plot the posterior on a grid

» That is, we compute p(u, 02| Y4, ..., Yp) for all combinations
of m values of 1 and m values of o2

» The number of grid points is mP where p is the number of
parameters in the model

» The posterior is plotted on the next slide for
Y; =268,Y>,=118,Y3=-0.97, Y, = —-0.98, Y5 = —1.03

and uniform priors over the plotting window
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Bivariate posterior
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Summarizing the results in a table

» Typically we are interested in the marginal posterior

) = [ plano®V)do?
where Y = (Y1, ..., Yn)
» This accounts for our uncertainty about o2
» We could also report the marginal posterior of o2

» Results are usually given in a table with marginal mean,
SD, and 95% interval for all parameters of interest

» The marginal posteriors can be computed using numerical
integration
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Summarizing the results in a table

\ Posterior mean Posterior SD 95% credible set
1 0.17 1.31 (-2.49, 2.83)
o 2.57 1.37 (1.10, 6.54)
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Frequentist analysis of a normal mean

» In frequentist statistics the estimate of the mean is Y

» If o is known the 95% interval is

= g
Y+ 2y975—=

Vvn
where z is the quantile of a normal distribution
» If o is unknown the 95% interval is

- s
Y +lyo75 01—

NG

where t is the quantile of a t-distribution
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Bayesian analysis of a normal mean

» The Bayesian estimate of x is its marginal posterior mean
» The interval estimate is the 95% posterior credible interval

» If o is known the posterior of n|Y is Gaussian and the 95%
interval is
E(u]Y) £ 20.975SD(1[Y)

» If o is unknown the marginal (over ¢2) posterior of 1 is t
with v = n+ 2a degrees of freedom.

» Therefore the 95% interval is
E(u|Y) £ th.975,SD(u|Y)

» See “Marginal posterior of 1" the online derivations
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Bayesian analysis of a normal mean

v

The following two slides give the posterior of . for a data
set with sample mean 10 and sample variance 4

The Gaussian analysis assumes o2 = 4 is known

v

The t analysis integrates over uncertainty in o

v

v

As expected, the latter interval is a bit wider
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Bayesian analysis of a normal mean
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Bayesian analysis of a normal mean
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Example with two parameters

» Assume N = 10 patients are given treatment and N = 10
are given control

» Let 1 and 6, be the survival probabilities for the two
treatment groups

» We pick priors 61, 62 ~ Uniform(0, 1)

» We observe Y; = 5 survivals and Y> = 8 survivals for
treatment, respectively

» Our goal is to determine if treatment improves survival, i.e.,
0> > 64

» This requires summarizing the bivariate posterior
p(01,02| Y1, Yz)
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Methods for dealing with multiple parameters

v

We want to compute Prob(6> > 61| Y7, Y2)

v

We could to an integral or grid approximation

v

Both often fail when there are many parameters

We need new tools!

v

v

Monte Carlo sampling will be a key tool

v

We'll spend a month on this in the computing section
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Comparing proportions

» The model is
> Yi]01 ~ Binomial(N, 6¢)
> Ys|0> ~ Binomial(N, 62)
> 01,05 ~ Beta(1,1)

» The posterioris 01|Yy, Yo ~ Beta(Y1 +1,N—Y; + 1)
independent of 05|Y7, Yo ~ Beta(Yo +1,N — Yo + 1)

» The next slide approximates posterior probability that
0o < 04 using MC sampling
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Summarizing a posterior using MC sampling

N <- 10; Y1 <- 5; Y2 <- 8 # Data

S <- 10000 # Number of MC samples
thetal <— rbeta(S,Y1+1,N-Y1+1)

theta?2 <- rbeta(S,Y2+1,N-Y2+1)

>

>

>

>

>

> hist (thetal, xlab=expression (thetalll]),
+ main="MC approximate posterior")
>  (Y1+1)/(N+2)# True post mean

[1] 0.5

> mean (thetal) # MC estimate

[1] 0.499631

>
>
+
+
>
[

plot (thetal, theta2,xlim=c (0,
xlab=expression (thetall
2

)

1),ylim=c(0,1),
1),
1))

ylab=expression (thetal
mean (theta2>thetal)
1] 0.9058
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Marginal posterior, p(61| Y1, Y2)
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Marginal posterior, p(62| Y1, Y2)
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Joint posterior, p(6+, 02| Y1, Y2)
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