Chapter 1.4

Summarizing a posterior

Summarizing a univariate posterior

- After selecting the likelihood and prior, all that remains is to summarize the posterior
- Say there is a single parameter, θ
- For example, we say the model is

Likelihood: $Y \mid \theta \sim \operatorname{Binomial}(N, \theta)$
Prior: $\theta \sim \operatorname{Uniform}(0,1)$

- We saw that the posterior is then

$$
\theta \mid Y \sim \operatorname{Beta}(Y+a, N-Y+b)
$$

- The posterior is a distribution that can be plotted as on the next slide

Summarizing a univariate posterior

In this beta/binomial example $Y=8, N=10$ and $a=b=1$

Summarizing a univariate posterior

- A plot of the posterior tells the whole story
- However, to be more concise we typically use a few numerical summaries of the distribution
- This is particularly important when there are many parameters
- The posterior can be summarized like any other distribution, by say the mean, variance, skewness, etc.

Point estimators

- A point estimator is a one number summary used to estimate the unknown parameter
- For example, we might use the posterior mean (or median) as the "best guess" of θ
- The posterior mean is

$$
\hat{\theta}=\mathrm{E}(\theta \mid Y)=\int \theta p(\theta \mid Y) d \theta
$$

- For the Beta/Binomial example $\hat{\theta}=\frac{Y+a}{n+a+b}$
- This is an alternative to the sample proportion $\hat{\theta}=Y / n$
- Estimators usually wear hats

MAP estimator

- The posterior mode is the called the maximum a posteriori (MAP) estimator
- The MAP estimator is

$$
\hat{\theta}=\underset{\theta}{\arg \max } p(\theta \mid Y)
$$

- Maximizing the log of the posterior is equivalent and easier, so we will usually use this for computation
- The MAP estimator is

$$
\hat{\theta}=\underset{\theta}{\arg \max } \log [p(\theta \mid Y)]=\underset{\theta}{\arg \max } \log [f(Y \mid \theta)]+\log [\pi(\theta)]
$$

- If the prior is uniform (i.e., flat) the MAP is the MLE
- The MAP is easier to compute than the posterior mean

MAP estimator

In this beta/binomial example $Y=8, N=10$ and $a=b=1$

MAP estimator

Assuming $Y \mid \theta \sim \operatorname{Binomial}(n, \theta)$ and $\pi(\theta)=1$, find the MAP estimator of θ

- The likelihood is $f(Y \mid \theta)=\binom{n}{Y} \theta^{Y}(1-\theta)^{n-Y}$
- The log likelihood is

$$
\log [f(Y \mid \theta)]=\log \left[\binom{n}{Y}\right]+Y \log (\theta)+(n-Y) \log (1-\theta)
$$

- The prior is $\pi(\theta)=1$
- The log prior is $\log [\pi(\theta)]=0$
- Therefore, the MAP estimator is

$$
\hat{\theta}=\underset{\theta}{\arg \max } \log [p(\theta \mid Y)]=\log \left[\binom{n}{Y}\right]+Y \log (\theta)+(n-Y) \log (1-\theta)
$$

MAP estimator

Assuming $Y \mid \theta \sim \operatorname{Binomial}(n, \theta)$ and $\pi(\theta)=1$, find the MAP estimator of θ

- To find the MAP estimator we take a derivative, set it so zero and solve
- $\frac{d}{d \theta} \log [p(\theta \mid Y)]=\frac{Y}{\theta}-\frac{n-Y}{1-\theta}=0$
- Solving for θ gives the MAP estimator is $\hat{\theta}=Y / n$
- This is the sample proportion, which is also the MLE

Uncertainty measures

- Sometimes a point estimate is sufficient, but more often we need to quantify uncertainty
- The posterior standard deviation is one measure of uncertainty
- If the posterior is approximately normal, then the mean plus/minus two standard deviation units captures 95% of the posterior probability
- The posterior standard deviation is analogous to but fundamentally different than the frequentist standard error
- The standard error is the standard deviation of $\hat{\theta}$'s sampling distribution

Uncertainty measures

In this beta/binomial example $Y=8, N=10$ and $a=b=1$

Credible intervals

- In addition to standard error, uncertainty can be quantified using a credible interval
- The interval (I, u) is a $100(1-\alpha) \%$ posterior credible interval/set if

$$
\operatorname{Prob}(I<\theta<u \mid Y)=1-\alpha
$$

- Interpretation of a 95\% credible interval: "given the data and prior, I am 95\% certain that θ is between I and u "
- This is analogous but different than a confidence interval

Credible intervals

- Credible sets are not unique
- Let q_{τ} be the τ quantile of the posterior so that

$$
\operatorname{Prob}\left(\theta<q_{\tau} \mid Y\right)=\tau
$$

- Then $\left(q_{0.00}, q_{0.95}\right),\left(q_{0.01}, q_{0.96}\right)$, etc. are all valid 95% credible sets
- The equal-tailed interval is $\left(q_{\alpha / 2}, q_{1-\alpha / 2}\right)$
- The highest posterior density interval searches for the smallest interval that contains the proper probability

Credible intervals

In this beta/binomial example $Y=8, N=10$ and $a=b=1$

Hypothesis testing

- Hypothesis tests are conducted by simply computing the posterior probability of each hypothesis
- Say the null hypothesis is $\mathcal{H}_{0}: \theta \leq 0.5$ and the alternative is $\mathcal{H}_{1}: \theta>0.5$
- The posterior probability of the null hypothesis is

$$
\operatorname{Prob}(\theta<0.5 \mid Y)=\int_{0}^{0.5} p(\theta \mid Y) d \theta
$$

- We reject the null if its probability is small
- In a Bayesian analysis we can say "Given the data and prior the probability that the null hypothesis is true is 0.02 "
- This is analogous to but different than the \mathbf{p}-value

Hypothesis testing

$>$ \# Data
$>\mathrm{Y}<-8 ; \mathrm{n}<-10$
$>$ \# The posterior is thetalY~Beta(A, B)
$>A<-Y+1 ; B<-n-Y+1$
$>$ \# Posterior mean
$>A /(A+B)$
[1] 0.75
> \# Posterior standard deviation
$>\operatorname{sqrt}(A * B /((A+B) *(A+B) *(A+B+1)))$
[1] 0.1200961
> \# Posterior 95\% credible interval
$>$ qbeta (c (0.025, 0.975) , A, B)
[1] 0.4822441 0.9397823
> \# Posterior probability that theta<0.5
$>$ pbeta (0.5,A,B)
[1] 0.03271484

Monte Carlo approximations

- Monte Carlo (MC) sampling is a useful tool for summarizing a posterior
- For univariate cases is it not particularly useful, but in harder problems is the best approach available
- In MC sampling we draw S samples from the posterior,

$$
\theta^{(1)}, \ldots, \theta^{(S)} \sim p(\theta \mid Y)
$$

and use these samples to approximate the posterior

- For example, the posterior mean and variance are approximated by the sample mean and variance of the $\theta^{(s)}$

Monte Carlo approximations

- MC sampling facilitates studying transformations of parameters
- For example, the odds corresponding to θ are $\gamma=\theta /(1-\theta)$
- How to approximate the posterior mean and variance of γ ?
- We simply transform each draw to the odds

$$
\gamma^{(1)}=\frac{\theta^{(1)}}{1-\theta^{(1)}}, \ldots, \gamma^{(S)}=\frac{\theta^{(S)}}{1-\theta^{(S)}}
$$

and use these draws to approximate γ 's posterior

Monte Carlo approximations

$>$ \# Data
$>\mathrm{Y}<-8 ; \mathrm{n}<-10$
$>$ \# The posterior is thetalY~Beta (A, B)
$>A<-Y+1 ; B<-n-Y+1$
> \# MC sampling
$>$ theta <- rbeta(100000,A,B)
> \# Approximate the posterior mean and SD
$>$ mean (theta) ; sd (theta)
[1] 0.749792
[1] 0.1201799
> \# Transform to odds
> gamma <- theta/(1-theta)
> \# Approximate the posterior mean and SD
> mean (gamma) ; sd (gamma)
[1] 4.483378
[1] 4.720541

Summarizing multivariate posteriors

- A univariate posterior is captured by simple plot
- When there are many parameters this is impossible
- Say $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{p}\right)$
- Ideally we reduce to the univariate marginal posteriors

$$
p\left(\theta_{1} \mid Y\right)=\int \ldots \int p\left(\theta_{1}, \ldots, \theta_{p} \mid Y\right) d \theta_{2}, \ldots, d \theta_{p}
$$

- The same ideas we used for univariate models then apply
- However, computing these integrals is often challenging

Bayesian one-sample t-test

- In this section we will study the one-sample t-test in depth
- Likelihood: $Y_{i} \mid \mu, \sigma \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$ independent over $i=1, \ldots, n$
- Priors: $\mu \sim \mathbf{N}\left(\mu_{0}, \sigma_{0}^{2}\right)$ independent of $\sigma^{2} \sim \operatorname{InvGamma}(a, b)$
- The joint (bivariate PDF) of $\left(\mu, \sigma^{2}\right)$ is proportional to

$$
\left\{\sigma^{n} \exp \left[-\frac{\sum_{i=1}^{n}\left(Y_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right]\right\} \exp \left[-\frac{\left(\mu-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}\right]\left(\sigma^{2}\right)^{a-1} \exp \left(-\frac{b}{\sigma^{2}}\right)
$$

- How to summarize this complicated function?

Plotting the posterior on a grid

- For models with only a few parameters we could simply plot the posterior on a grid
- That is, we compute $p\left(\mu, \sigma^{2} \mid Y_{1}, \ldots, Y_{n}\right)$ for all combinations of m values of μ and m values of σ^{2}
- The number of grid points is m^{p} where p is the number of parameters in the model
- The posterior is plotted on the next slide for

$$
Y_{1}=2.68, Y_{2}=1.18, Y_{3}=-0.97, Y_{4}=-0.98, Y_{5}=-1.03
$$

and uniform priors over the plotting window

Bivariate posterior

Summarizing the results in a table

- Typically we are interested in the marginal posterior

$$
f(\mu \mid \mathbf{Y})=\int_{0}^{\infty} p\left(\mu, \sigma^{2} \mid \mathbf{Y}\right) d \sigma^{2}
$$

where $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$

- This accounts for our uncertainty about σ^{2}
- We could also report the marginal posterior of σ^{2}
- Results are usually given in a table with marginal mean, SD, and 95% interval for all parameters of interest
- The marginal posteriors can be computed using numerical integration

Summarizing the results in a table

	Posterior mean	Posterior SD	95\% credible set
μ	0.17	1.31	$(-2.49,2.83)$
σ	2.57	1.37	$(1.10,6.54)$

Frequentist analysis of a normal mean

- In frequentist statistics the estimate of the mean is \bar{Y}
- If σ is known the 95% interval is

$$
\bar{Y} \pm z_{0.975} \frac{\sigma}{\sqrt{n}}
$$

where z is the quantile of a normal distribution

- If σ is unknown the 95% interval is

$$
\bar{Y} \pm t_{0.975, n-1} \frac{s}{\sqrt{n}}
$$

where t is the quantile of a t -distribution

Bayesian analysis of a normal mean

- The Bayesian estimate of μ is its marginal posterior mean
- The interval estimate is the 95% posterior credible interval
- If σ is known the posterior of $\mu \mid \mathbf{Y}$ is Gaussian and the 95% interval is

$$
\mathrm{E}(\mu \mid \mathbf{Y}) \pm z_{0.975} \mathrm{SD}(\mu \mid \mathbf{Y})
$$

- If σ is unknown the marginal (over σ^{2}) posterior of μ is t with $\nu=n+2$ a degrees of freedom.
- Therefore the 95% interval is

$$
\mathrm{E}(\mu \mid \mathbf{Y}) \pm t_{0.975, \nu} \mathrm{SD}(\mu \mid \mathbf{Y})
$$

- See "Marginal posterior of μ " the online derivations

Bayesian analysis of a normal mean

- The following two slides give the posterior of μ for a data set with sample mean 10 and sample variance 4
- The Gaussian analysis assumes $\sigma^{2}=4$ is known
- The t analysis integrates over uncertainty in σ^{2}
- As expected, the latter interval is a bit wider

Bayesian analysis of a normal mean

$$
n=5
$$

Bayesian analysis of a normal mean

$$
\mathrm{n}=25
$$

Example with two parameters

- Assume $N=10$ patients are given treatment and $N=10$ are given control
- Let θ_{1} and θ_{2} be the survival probabilities for the two treatment groups
- We pick priors $\theta_{1}, \theta_{2} \sim \operatorname{Uniform}(0,1)$
- We observe $Y_{1}=5$ survivals and $Y_{2}=8$ survivals for treatment, respectively
- Our goal is to determine if treatment improves survival, i.e., $\theta_{2}>\theta_{1}$
- This requires summarizing the bivariate posterior $p\left(\theta_{1}, \theta_{2} \mid Y_{1}, Y_{2}\right)$

Methods for dealing with multiple parameters

- We want to compute $\operatorname{Prob}\left(\theta_{2}>\theta_{1} \mid Y_{1}, Y_{2}\right)$
- We could to an integral or grid approximation
- Both often fail when there are many parameters
- We need new tools!
- Monte Carlo sampling will be a key tool
- We'll spend a month on this in the computing section

Comparing proportions

- The model is
- $Y_{1} \mid \theta_{1} \sim \operatorname{Binomial}\left(N, \theta_{1}\right)$
- $Y_{2} \mid \theta_{2} \sim \operatorname{Binomial}\left(N, \theta_{2}\right)$
- $\theta_{1}, \theta_{2} \sim \operatorname{Beta}(1,1)$
- The posterior is $\theta_{1} \mid Y_{1}, Y_{2} \sim \operatorname{Beta}\left(Y_{1}+1, N-Y_{1}+1\right)$ independent of $\theta_{2} \mid Y_{1}, Y_{2} \sim \operatorname{Beta}\left(Y_{2}+1, N-Y_{2}+1\right)$
- The next slide approximates posterior probability that $\theta_{2}<\theta_{1}$ using MC sampling

Summarizing a posterior using MC sampling

```
> N <- 10; Y1 <- 5; Y2 <- 8 # Data
> S <- 10000 # Number of MC samples
> thetal <- rbeta(S,Y1+1,N-Y1+1)
> theta2 <- rbeta(S,Y2+1,N-Y2+1)
>
> hist(theta1,xlab=expression(theta[1]),
+ main="MC approximate posterior")
> (Y1+1)/(N+2) # True post mean
[1] 0.5
> mean(thetal) # MC estimate
[1] 0.499631
>
> plot(theta1,theta2,xlim=c(0,1),ylim=c(0,1),
+ xlab=expression(theta[1]),
+ ylab=expression(theta[2]))
> mean(theta2>theta1)
[1] 0.9058
```


Marginal posterior, $p\left(\theta_{1} \mid Y_{1}, Y_{2}\right)$

MC approximate posterior

Marginal posterior, $p\left(\theta_{2} \mid Y_{1}, Y_{2}\right)$

MC approximate posterior

Joint posterior, $p\left(\theta_{1}, \theta_{2} \mid Y_{1}, Y_{2}\right)$

