
Chapter 1

Basics of Bayesian
Inference
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A motivating example

I Student 1 will secretly write down a number (1,2,...,10) and
then mentally call heads or tails

I The instructor will flip a coin

I If student 1 guessed H/T correctly, they will honestly tell
student 2 if their number is even or odd

I If not, they will lie

I Student 2 will then guess if the number is odd or even

I Let θ be probability that student 2 correctly guesses
whether the number is even or odd
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A motivating example

Before we start,

1. What’s your best guess about θ?

2. What’s the probability that θ is greater than a half?
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A motivating example

The class has Y = successes in n = trials. In light of
these data,

1. What’s your best guess about θ?

2. What’s the probability that θ is greater than a half?
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Frequentist approach

I A frequentist procedure quantifies uncertainty in terms of
repeating the process that generated the data many times

I The parameters θ are fixed and unknown

I The sample (data) Y is random

I A frequentest would never say Prob(θ > 0) = 0.60
because θ is not a random variable

I All probability statements should be made about
randomness in the data
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Frequentist approach

I A frequentist procedure quantifies uncertainty in terms of
repeating the process that generated the data many times

I For an illustration see http://www.rossmanchance.
com/applets/ConfSim.html

I A statistic θ̂ is a summary of the sample

I For example, the sample proportion θ̂ = Y/n is a statistic,
and it is an estimator of the true proportion θ

I The distribution of θ̂ that arises from repeating the process
that generated the data many times is its sampling
distribution

I A frequentist would never say “the distribution of θ is
Normal(4.2,1.2)”
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Frequentist approach

I A frequentist procedure quantifies uncertainty in terms of
repeating the process that generated the data many times

I A 95% confidence interval (l ,u) is

I A frequentist would never say “the probability that the true
proportion is in the interval (0.4, 0.5) is 0.95”

7 / 27



Frequentist approach

I A frequentist procedure quantifies uncertainty in terms of
repeating the process that generated the data many times

I A common approach for testing a hypothesis is to reject
the null if a test statistic exceeds a threshold

I For example, we might reject H0 : θ ≤ 0.5 in favor of the
alternative H1 : θ > 0.5 if θ̂ = Y/n > T

I A p-value is

I A frequentist would never say “the probability that the null
hypothesis is true is 0.03”
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Frequentist approach

There is currently an intense discussion of the merits of the
p-value in the scientific community:

I http://www.nature.com/news/
scientific-method-statistical-errors-1.
14700

I http://fivethirtyeight.com/features/
not-even-scientists-can-easily-explain-p-values/

I http://fivethirtyeight.com/features/
science-isnt-broken/

I http://www.tandfonline.com/doi/pdf/10.1080/
01973533.2015.1012991
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How about a frequentist answer these questions?

Before we start:

1. What’s your best guess about θ?

2. What’s the probability that θ is greater than a half?

After we have observed some n trials and sample proportion
θ̂ = Y/n:

1. What’s your best guess about θ?

2. What’s the probability that θ is greater than a half?
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The Bayesian approach

I Bayesians also view θ as fixed and unknown

I However, we express our uncertainty about θ using
probability distributions

I The distribution before observing the data is the prior
distribution

I Example: Prob(θ > 0.5) = 0.6.

I Probability statements like this are intuitive (to me at least)

I This is subjective in that people may have different priors
(we will also discuss objective Bayes)
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The Bayesian approach

I Our uncertainty about θ is changed (hopefully reduced)
after observing the data

I The Likelihood function is the distribution of the
observed data given the parameters

I This is the same likelihood function used in a maximum
likelihood analysis

I Therefore, when the prior information is weak, Bayesian
and maximum likelihood estimates are similar

I Even in this case, the interpretations are different
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The Bayesian approach

I The uncertainty distribution of θ after observing the data is
the posterior distribution

I Bayes theorem provides the rule for updating the prior

p(θ|Y ) =
f (Y |θ)π(θ)

m(Y )

I In words: Posterior ∝ Likelihood·prior

I A key difference between Bayesian and frequentist
statistics is that all inference is conditional on the single
data set we observed Y
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Back to the example

I Say we observed Y = 60 successes in n = 100 trials

I The parameter θ ∈ [0,1] is the true probability of success

I In most cases we would select a prior that puts probability
on all values between 0 and 1

I If we have no relevant prior information we might use the
prior

θ ∼ Uniform(0,1)

so that all values between 0 and 1 are equally likely

I This is an example of an uninformative prior
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Posterior distribution

I The likelihood is Y |θ ∼ Binomial(n, θ)

I The uniform prior is θ ∼ Uniform(0,1)

I Then it turns out the posterior is

θ|Y ∼ Beta(Y + 1,n − Y + 1)

15 / 27



Bayesian learning: Y = 60 and n = 100
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Beta prior

I The uniform prior represents prior ignorance

I To encode prior information we need a more general prior

I The beta distribution is a common prior for a parameter
that is bounded between 0 and 1

I If θ ∼ Beta(a,b) then the posterior is

θ|Y ∼ Beta(Y + a,n − Y + b)
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Prior 1: θ ∼ Beta(1,1)
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Prior 2: θ ∼ Beta(0.5,0.5)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

θ

D
en

si
ty

Prior
Posterior

19 / 27



Prior 3: θ ∼ Beta(2,2)
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Prior 4: θ ∼ Beta(20,1)
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Plot of different beta priors
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Plots of the corresponding posteriors
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Senstivity to the prior

Prior Posterior
a b Mean SD P>0.5 Mean SD P>0.5
1 1 0.50 0.29 0.50 0.60 0.05 0.98

0.5 0.5 0.50 0.50 0.50 0.60 0.05 0.98
2 2 0.50 0.22 0.50 0.60 0.05 0.98
20 1 0.95 0.05 1.00 0.66 0.04 1.00
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Summary

I The first three priors give essentially the same results

I Say the objective is to test Ho : θ ≤ 0.5 versus HA : θ > 0.5

I In these three cases we can say that after observing the
data the probability of the null is only 0.02 and the
alternative is 50 times more likely than the null

I The final prior strongly favored large θ and gave different
results

I How would we argue this analysis is useful?
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Advantages of the Bayesian approach

I Bayesian concepts (posterior prob of the null) are arguably
easier to interpret than frequentist ideas (p-value)

I We can incorporate scientific knowledge via the prior

I Even a small amount of prior information can add stability

I Excellent at quantifying uncertainty in complex problems
(e.g., missing data, correlation, etc.)

I In some cases the computing is easier

I Provides a framework to incorporate data/information from
multiple sources
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Disadvantages of Bayesian methods

I Less common/familiar

I Picking a prior is subjective (we will study objective priors)

I Procedures with frequentist properties are desirable (we
will study the frequentist properties of Bayesian methods)

I Computing can be slow or unstable for hard problems

I Nonparametric methods are challenging

27 / 27


