
ST440/540 Applied Bayesian Analysis 
Lab activity for 4/1/2024 

 
Final homework assignment is due this Friday 

Abstract is due 4/12 

I will send the exam later this week.  It is due April 15 

 

A. HOMEWORK AND CLASS PARTICIPATION SOLUTIONS 

 
Let Yt be the number of days with snow at RDU Airport in year t (below) and Xt=t be the year. Write a 

generalized linear model to test whether the rate of snowfall days is changing over time.  Give the 

likelihood and prior and describe how you would carry out the test.  

 

Since Yt is a count, I would use a Poisson model.  To allow the mean to change over time I would use Xt 

as a covariate in the log mean, so Yt | λt ~ Poisson(λt) with λt = exp(a + bXt) > 0.  For uninformative prior I 

would use a,b~Normal(0,100). I would use MCMC to approximate the posterior of b and conclude the 

snowfall distribution is changing over time if the 95% interval excluded zero.   

  



B. DISCUSSION QUESTIONS 

 
(1) Let Y be the party affiliation of a voter and X be their annual income.  Say Y is either R, D or I and X is 

continuous and positive.  The goal is to build a model to predict party affiliation given income. 

(a) Below are two modeling approaches based on logistic regression. Which do you prefer and why?   

Model 1 

  Logit[Prob(Y=R)] = a1 + b1*X Logit[Prob(Y=D)] = a2 + b2*X Logit[Prob(Y=I)] = a3 + b3*X 

 

Model 2 

  

  Logit[Prob(Y=R)] = a1+b1*X Logit[Prob(Y=D|Y≠ R )] = a2+b2*X 

 

Model 1 doesn’t make sense because the three probabilities don’t necessarily sum to one. 

(b) In the second model, what is the probability that a voter with income X=x is independent?  Use 

notation Logit(Prob(Y=R)) = a1+b1X  <=>  Prob(Y=R) = expit(a1+b1X). 

Prob(Y=I) = Prob(not R)* Prob(not D|not R) = [1-expit(a1+b1X)] [1-expit(a2+b2X)]. 

(c) In the second model, what is the interpretation of the parameter b2? 

Given that Y is either D or I, the log odds of D increase by b2 if X increases by 1. 

(d) How would you modify this model if the covariate was X discrete with levels low, medium and high? 

Add two dummy variables, X1 = 1 if medium and X1 = 0 otherwise and X2 = 1 if high and X2 = 0 

otherwise, 

 

Logit[Prob(Y=R)] = a1+ b1*X1 + c1*X2 Logit[Prob(Y=D|Y≠ R )] = a2+b2*X1+ c2*X2   



(2) The plots below show the fit of a non-parametric regression model with  

Yi  =  a  +   ∑ Bj(Xi)bj

J

j=1

  +  ei 

and flat priors for the regression coefficients a,b1,…,bJ  The three plots use the same response variable Y 

but different X variables.  The code is on the final page 

 

(a) Visually, which values of J look the best for each fit? 

I’d say 5 or 10. 

(b) How would you formally select J? 

Cross validation, DIC or WAIC are all options. 

(c) If the flat priors were replaced by normal priors bj ~ Normal(0,v) with v ~ InvGamma(0.1,0.1), would 

you expect to need more or fewer basis functions? Why? 

I’d expect we’d need more basis functions because the prior would prevent over-fitting so we could 

have more basis function and retain a stable fit.   



(3) Consider the models 

M1: Y ~ N(0, σ2) 

M2: Y|µ ~ N(µ, σ2) and µ ~ N(0, cσ2) 

The Bayes factor comparing M2 and M1 is  

𝐵𝐹 =  
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(a) What happens to the Bayes factor as c -> infinity? 

The prior becomes more uninformative and BF goes to zero, favoring the null model. 

(b) What does this tell you about Bayes factors? 

They are very sensitive to the prior. 

  



(4) Take a minute to review the analysis of the Gambia data, 

     https://www4.stat.ncsu.edu/~bjreich/BSMdata/SSVS.html 

Below is output from the SSVS model and Bayesian logistic regression with uninformative Gaussian 

priors for all parameters 

SSVS model 

 Inc_Prob  50%    5%   95% 

Age     1.00 0.26  0.19  0.34 

Netuse     1.00    -0.25 -0.34 -0.17 

Treated    0.79    -0.13 -0.24  0.00 

Green     1.00 0.29    0.21  0.37 

PCH     0.56    -0.05 -0.19  0.00 

  

Flat priors 

            Mean   SD    5%   95% 

Age         0.27 0.05  0.18  0.37 

Netuse     -0.25 0.05 -0.36 -0.15 

Treated    -0.13 0.06 -0.25 -0.01 

Green       0.29 0.05  0.19  0.39 

PCH        -0.10 0.05 -0.20  0.01 

(a)  How do the results compare?  Which model would you use?  

The model fits are pretty similar, so I’d probably us flat priors because it’s faster and easier to explain. 

(b) We have now used two ways to determine if a covariates is “significant”: (i) SSVS and inclusion 

probabilities>0.5 and (ii) a flat prior and seeing if zero is included in the posterior intervals.  What are 

the pros and cons of these two approaches? 

For models with only a few covariates I use posterior intervals, but if there are many covariates it’s 

better to use SSVS. 

 

  



(5) The data generated below has very strong collinearity.   

(a) What do you anticipate the output of the SSVS model will be in tables below? 

 Inc_Prob  50%    5%   95% 

X1           -       -      -     -  

X2           -       -      -     -  

X3           -       -      -     -  

Model   Posterior probs 

NULL    - 

X1    - 

X2    - 

X3    - 

X1 + X2   - 

X1 + X3   - 

X2 + X3   - 

X1 +X2 +X3   - 

   

The values are 
Inc_Prob 50% 5% 95% 

beta[1] 0.58 0.0 -5.23 1.55 

beta[2] 0.65 0.4 -0.49 7.10 

beta[3] 0.51 0.0 -0.67 1.51 

Model probabilities: 
Intercept + X1 + X2 Intercept + X2 Intercept + X1 + X2 + X3 

0.201 0.173 0.144 

Intercept + X2 + X3 Intercept + X3 Intercept + X1 

0.132 0.118 0.117 

Intercept + X1 + X3 

0.114  

 

(b) In real life, how would you handle this analysis? 

Remove some covariates until the model has less collinearity. 

  



# Code 

n  <- 100 

p  <- 3 

set.seed(919) 

X1 <- rnorm(n) 

X2 <- X1 + 0.01*rnorm(n) 

X3 <- X2 + 0.01*rnorm(n) 

X  <- cbind(X1,X2,X3) 

Y  <- rnorm(n,X2,1) 

 

> round(cor(X),4) 

       X1     X2     X3 

X1 1.0000 0.9999 0.9999 

X2 0.9999 1.0000 0.9999 

X3 0.9999 0.9999 1.0000 

 

> summary(lm(Y~X)) 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept) -0.06191    0.09623  -0.643    0.522 

XX1         -8.13549   10.22983  -0.795    0.428 

XX2         15.43476   13.65390   1.130    0.261 

XX3         -6.13203    9.51324  -0.645    0.521 

 

Residual standard error: 0.9493 on 96 degrees of freedom 

Multiple R-squared:  0.5753,    Adjusted R-squared:  0.5621  

F-statistic: 43.36 on 3 and 96 DF,  p-value: < 2.2e-16 

 

 

  



# SSVS model in JAGS 

m <- textConnection("model{ 

    for(i in 1:n){ 

       Y[i]  ~ dnorm(mu[i],taue) 

      mu[i] <- alpha + X[i,1]*beta[1] + X[i,2]*beta[2] + X[i,3]*beta[3] 

    } 

    for(j in 1:3){ 

        beta[j] <- gamma[j]*delta[j] 

        gamma[j] ~ dbern(0.5) 

        delta[j] ~ dnorm(0,taub) 

    } 

    alpha ~ dnorm(0,0.01) 

    taub   ~ dgamma(0.1,0.1) 

    taue   ~ dgamma(0.1,0.1) 

}") 

 

# Run JAGS 

   library(rjags) 

   data   <- list(Y=Y,X=X,n=n) 

   burn   <- 10000 

   iters  <- 50000 

   chains <- 3  

   model  <- jags.model(m,data = data, n.chains=chains,quiet=TRUE) 

   update(model, burn, progress.bar="none") 

   samps  <- coda.samples(model, variable.names=c("beta"),  

                          thin=5, n.iter=iters, progress.bar="none") 

   plot(samps) 

 

# Summarize the posterior of beta 

   beta    <- NULL 

   for(l in 1:chains){ 

     beta <- rbind(beta,samps[[l]]) 

   } 

   Inc_Prob <- apply(beta!=0,2,mean) 

   Q        <- t(apply(beta,2,quantile,c(0.5,0.05,0.95))) 

   out      <- cbind(Inc_Prob,Q) 

   round(out,2) 

 

# Compute model probabilities 

   model <- "Intercept"  

   names <- paste0("X",1:3) 

   for(j in 1:3){ 

     model <- paste(model,ifelse(beta[,j]==0,"","+")) 

     model <- paste(model,ifelse(beta[,j]==0,"",names[j])) 

   } 

   model_probs <- table(model)/length(model) 

   model_probs <- sort(model_probs,dec=T) 

   round(model_probs,3) 

 

# Plot predicted versus fitted 

   plot(X%*%colMeans(beta),Y) 

 

  



Code for problem 2 

library(splines) 

 

data(airquality) 

Ozone <- airquality[,1] 

SR    <- airquality[,2] 

Wind  <- airquality[,3] 

Temp  <- airquality[,4] 

 

par(mfrow=c(1,3)) 

for(i in 1:3){ 

 if(i==1){X <- SR;xlab <- "Solar radiation"} 

 if(i==2){X <- Wind;xlab <- "Wind speed"} 

 if(i==3){X <- Temp;xlab <- "Temperature"} 

 

 Y    <- Ozone 

 ylab <- "Ozone" 

 

 ooo  <- order(X) 

 Y    <- Y[ooo] 

 X    <- X[ooo] 

 plot(X,Y,xlab=xlab,ylab=ylab) 

 m    <- c(5,10,20) 

 for(j in 1:length(m)){ 

   B   <- bs(X,df=m[j]) 

   b   <- lm(Y ~ B)$coef 

   lines(X,b[1] + B%*%b[-1],lwd=2,col=j) 

  } 

  if(i==1){ 

    legend("topleft",paste("J =",m),lwd=2,col=1:4,bty="n") 

  } 

} 

 

 

 

 

 

 

 

 


