
ST440/540 Applied Bayesian Analysis 
Lab activity for 3/4/2024 

 

A. HOMEWORK AND QUIZ SOLUTIONS 

 
Quiz 5: The optimal acceptance rate for Metropolis sampling is 20-40%.   

 

(a) Why is a lower acceptance rate suboptimal? The algorithm gets stuck on particular values for 

several iterations and doesn’t explore the full posterior efficiently.  

 

(b) Why is a high acceptance rate suboptimal? The algorithm makes only small steps every iteration 

and doesn’t explore the full posterior efficiently. 

 

 

Chapter 3, problem 6 

 

(a) Because the prior mean of theta is q_i, so the clutch percentage prior is centered on the overall 

percentage. 

 

(b) If prior variance is controlled by m.  Below is the prior with q_i = 0.8 and various m 

 
theta <- seq(0,1,0.01) 

q     <- 0.8 

m     <- seq(2,6,1) 

plot(NA,xlim=0:1,ylim=c(0,20),xlab=expression(theta),ylab="Prior density") 

for(i in 1:length(m)){ 

  lines(theta,dbeta(theta,exp(m[i])*q,exp(m[i])*(1-q)),lwd=2,col=i) 

} 

legend("topleft",paste("m =",m),lwd=2,col=1:length(m),bty="n") 

 



(c) The full posterior is proportional to 

 

f(Y_1|theta_1)*…*f(Y_n|theta_n)*pi(theta_1|m)*…*pi(theta_n|m)*pi(m) 

 

For the full conditional of theta1 all terms that don’t involve theta1 can be absorbed into the 

proportionality constant, and so the full conditional distribution for theta1 is proportional to  

 

f(Y_1|theta_1) pi(theta_1|m) 

 

We are left with a binomial likelihood and beta prior.  So, following the usual beta-binomial 

conjugacy results with a=exp(m)*q1 and b = exp(m)*(1-q1) we have that  

 

theta1|Y1 ~ Beta(Y1+exp(m)*q1,n1-Y1-exp(1-q1)). 

 

(d) Here is the code.  It uses a Gibbs step for theta and Metropolis for m.  Because m can be any real 

number (this is why we decided to use exp(m) rather than m in the beta prior) we use a Gaussian 

candidate distribution.   

 
N      <- 10 

Y      <- c(64,72,55,27,75,24,28,66,40,13) 

n      <- c(75,95,63,39,83,26,41,82,54,16) 

q      <- c(0.845,0.847,0.880,0.674,0.909, 

            0.898,0.770,0.801,0.802,0.875) 

player <- c("RW","JH","KL","LBJ","IT","SC","GA","JW","AD","KD") 

 

iters      <- 5000 

burn       <- 1000 

keep_theta <- matrix(0,iters,N) 

keep_m     <- rep(0,N) 

colnames(keep_theta) <- player 

 

theta  <- q 

m      <- 0 

can_sd <- 1 

for(iter in 1:iters){ 

   theta <- rbeta(N,Y+exp(m)*q,n-Y+exp(m)*(1-q)) 

 

   can <- rnorm(1,m,can_sd) 

   R   <- sum(dbeta(theta,exp(can)*q,exp(can)*(1-q),log=TRUE))- 

          sum(dbeta(theta,  exp(m)*q,  exp(m)*(1-q),log=TRUE))+ 

          dnorm(can,0,sqrt(10),log=TRUE)- 

          dnorm(  m,0,sqrt(10),log=TRUE) 

   if(log(runif(1))<R){m <- can} 

   

   keep_theta[iter,] <- theta 

   keep_m[iter]      <- m 

} 

 

acc_rate <- mean(keep_m[2:iters]!=keep_m[2:iters-1]) 

boxplot(keep_theta[burn:iters,],ylab=”Posterior of theta”,outline=FALSE) 

plot(keep_m,type="l",xlab="Iteration",ylab="Sample of m", 

     main=paste("Acceptance prob =",round(acc_rate,2))) 



 

 
Convergence looks pretty good for m, theta is even better. 

 

(e) Here is the JAGS code 

 
library(rjags) 

 

model_string <- textConnection("model{ 

   for(i in 1:10){ 

     Y[i]     ~ dbin(theta[i],n[i]) 

     theta[i] ~ dbeta(q[i]*exp(m),(1-q[i])*exp(m)) 

   } 

   m  ~  dnorm(0, 0.1) 

}") 

 

data  <- list(n=n,Y=Y,q=q) 

inits <- list(theta=q,m=0) 

model <- jags.model(model_string,data = data,  

         inits=inits, n.chains=1,quiet=TRUE) 

update(model, 1000, progress.bar="none") 

params  <- c("theta","m") 

samples <- coda.samples(model,  

           variable.names=params,  

           n.iter=5000, progress.bar="none") 

samples <- as.matrix(samples[[1]]) 

m       <- samples[,1] 

theta   <- samples[,-1] 

colnames(theta) <- player 

boxplot(theta,ylab="Posterior of theta",outline=FALSE) 

plot(m,type="l",xlab="Iteration",ylab="Sample of m") 



  
The results are the same of the previous question. 

 

(f) The advantage of coding it yourself is you have more control over the algorithm, disadvantages 

are that it generally takes longer to code and is more prone to error. 

 

  



B. DISCUSSION QUESTIONS 
 

(1) Describe to the class the error messages on  

https://www4.stat.ncsu.edu/~bjreich/BSMdata/errors.html 

(i) Forget to pass a variable as data 

(ii) Missing values 

(iii) Defining a variables twice 

(iv) Priors with invalid range or initial values 

(v) Passing variables that are not used 

(vi) Sending an invalid list of parameters to keep 

 

  



(2) Write the following model in JAGS code:  

 https://www4.stat.ncsu.edu/~bjreich/BSMdata/MH_concussion.html 

The model is Yi∼Poisson(Nλi) where λi=exp(β1+iβ2) and the priors are β1,β2∼Normal(0,τ). 

 

model{ 

 for(i in 1:4){ 

    Y[i] ~ dpois(lambda[i]) 

    log(lambda[i]) <- beta1+beta2*i 

 }  

 beta1 ~ dnorm(0,0.1) # setting prior variance to tau=10.  

 beta2 ~ dnorm(0,0.1) 

} 

  



(3) The analyses linked below compare four different Bayesian software packages 

  https://www4.stat.ncsu.edu/~bjreich/BSMdata/software.html 

  https://www4.stat.ncsu.edu/~bjreich/BSMdata/software2.html  

Rank (keeping in mind that this a very small example) the four packages in terms of  

(a) Speed per iteration – JAGS was fastest (STAN is faster for harder problems) 

(b) Convergence – JAGS was easier to tell it converged, OpenBUGS plots were confusing, ESS was 

highest for STAN 

(c) User interface – STAN is complicated, others are about the same 

 

  



(4) Examine the output in the analysis posted at 

https://www4.stat.ncsu.edu/~bjreich/logistic_bball.html 

and summarize MCMC converge for each model 

(a) Linear: Convergence is pretty good, could be run a bit longer to get ESS > 100 

(b) Quadratic: It seems to have converged (Geweke and R are OK) but ESS is low so it needs to run 

longer 

(c) Cubic: All metrics indicate the chains have not converged. 

 

  



(5) List 10 things you might try if MCMC doesn’t converge: 

1. Run it longer 

2. Better initial values 

3. Different candidate distribution (M-H v Metropolis) 

4. Use STAN or NIMBLE 

5. Change priors (beta instead for normal prior, make them tighter/reduce variance) 

6. Pick prior based on data (empirical bayes, get MLEs) or fix some parameters 

7. Get more data  

8. Simplify the model!  

9. Check identifiability  

10. Double check code 

11. Chose a fancier algorithm, like adaptive MH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


