
ST440/540 Applied Bayesian Analysis 
Lab activity for 3/25/2024 

 

A. HOMEWORK AND QUIZ SOLUTIONS 

 
Q7: In Bayesian multiple linear regression with known error variance the Jeffries prior for the regression 

coefficients is prior 𝜋(𝛽) ∝ 1. Does this always lead to a proper posterior?  Why or why not? 

 

The posterior is not always proper.  It is proper if X’X is invertable, which requires n>p and the 

covariates to be linearly independent. 

 

Chapter 4, Problem 2 

 

(2a)  
library(MASS) 

data(Boston) 

X  <- scale(Boston[,1:13]) 

Y  <- as.vector(scale(Boston[,14])) 

 

library(rjags) 

data <- list(n=length(Y),p=ncol(X),X=X,Y=Y) 

 

model_string <- textConnection("model{ 

 

   # Likelihood 

   for(i in 1:n){ 

     Y[i]   ~ dnorm(mu[i],tau) 

     mu[i] <- alpha + inprod(X[i,],beta[]) 

   } 

   for(j in 1:p){ 

      beta[j] ~ dnorm(0,0.01) 

   } 

   alpha ~  dnorm(0, 0.01) 

   tau   ~  dgamma(0.1, 0.1) 

 }") 

 

model <- jags.model(model_string,data = data, n.chains=2,quiet=TRUE) 

update(model, 10000, progress.bar="none") 

params  <- c("beta") 

samples <- coda.samples(model,  

           variable.names=params,  

            n.iter=10000, progress.bar="none") 

 plot(samples) 



 
 

 

 

 

 

 

 

 

 

 

 

sum1     <- summary(samples)$stat[,1:2] 

rownames(sum1) <- colnames(X) 



round(sum1,3) 

##           Mean    SD 

## crim    -0.101 0.031 

## zn       0.118 0.035 

## indus    0.013 0.046 

## chas     0.074 0.024 

## nox     -0.223 0.048 

## rm       0.292 0.032 

## age      0.002 0.041 

## dis     -0.338 0.046 

## rad      0.287 0.063 

## tax     -0.222 0.069 

## ptratio -0.224 0.031 

## black    0.093 0.027 

## lstat   -0.407 0.040 

 

Convergence looks great. All covariates except age and indus have 95% intervals that exclude zero. 

 

(2b) 

 
sum2 <- summary(lm(Y~X))$coef[,1:2] 

round(sum2,3) 

##             Estimate Std. Error 

## (Intercept)    0.000      0.023 

## Xcrim         -0.101      0.031 

## Xzn            0.118      0.035 

## Xindus         0.015      0.046 

## Xchas          0.074      0.024 

## Xnox          -0.224      0.048 

## Xrm            0.291      0.032 

## Xage           0.002      0.040 

## Xdis          -0.338      0.046 

## Xrad           0.290      0.063 

## Xtax          -0.226      0.069 

## Xptratio      -0.224      0.031 

## Xblack         0.092      0.027 

## Xlstat        -0.407      0.039 

 

The results are nearly identical to the Bayesian analysis with uninformative priors, as expected. 

 

 

 

 

 

 

(2c) 

 



model_string <- textConnection("model{ 

 

   # Likelihood 

   for(i in 1:n){ 

     Y[i]   ~ dnorm(mu[i],tau) 

     mu[i] <- alpha + inprod(X[i,],beta[]) 

   } 

   for(j in 1:p){ 

      beta[j] ~ ddexp(0,taub) 

   } 

   alpha ~  dnorm(0, 0.01) 

   tau   ~  dgamma(0.1, 0.1) 

   taub  ~  dgamma(0.1, 0.1) 

}") 

 

model <- jags.model(model_string,data = data, n.chains=2,quiet=TRUE) 

update(model, 10000, progress.bar="none") 

params  <- c("beta") 

samples <- coda.samples(model,  

           variable.names=params,  

           n.iter=10000, progress.bar="none") 

sum3     <- summary(samples)$stat[,1:2] 

rownames(sum3) <- colnames(X) 

round(sum3,3) 

##           Mean    SD 

## crim    -0.093 0.031 

## zn       0.106 0.035 

## indus   -0.001 0.042 

## chas     0.074 0.024 

## nox     -0.204 0.047 

## rm       0.295 0.032 

## age     -0.002 0.037 

## dis     -0.322 0.045 

## rad      0.244 0.065 

## tax     -0.184 0.069 

## ptratio -0.218 0.031 

## black    0.090 0.027 

## lstat   -0.406 0.039 

 

In this case with n >> p the results of the Bayesian lasso are similar to those from the analysis with 

uninformative priors. 

 

 

 

 

(2d) 

 



model_string <- textConnection("model{ 

   # Likelihood 

   for(i in 1:500){ 

     Y[i]   ~ dnorm(mu[i],tau) 

     mu[i] <- alpha + inprod(X[i,],beta[]) 

   } 

   for(j in 1:p){ 

      beta[j] ~ dnorm(0,0.01) 

   } 

   alpha ~  dnorm(0, 0.01) 

   tau   ~  dgamma(0.1, 0.1) 

   for(i in 501:n){ 

     Yp[i]   ~ dnorm(mup[i],tau) 

     mup[i] <- alpha + inprod(X[i,],beta[]) 

   } 

}") 

 

model <- jags.model(model_string,data = data, n.chains=2,quiet=TRUE) 

update(model, 10000, progress.bar="none") 

params  <- c("Yp") 

samples <- coda.samples(model,  

           variable.names=params,  

           n.iter=10000, progress.bar="none") 

Yp     <- rbind(samples[[1]],samples[[2]]) 

boxplot(Yp,outline=FALSE,xlab="Observation",ylab="PPD") 

lines(Y[501:506],lwd=2,col=2) 

 
The observed values all fall in center of the PPD. 

 



B. DISCUSSION QUESTIONS 

 
(1) A study randomized 100 subjects to either treatment or control groups.  The treatment group will 

take a high-intensity spinning class each morning and the control group will continue their normal 

routine.  Each patient will have their blood pressure measured at baseline and once a week for each of 

the four weeks of the study.  The goal is to determine whether spinning reduces blood pressure. 

(a) Describe a model and priors for these data 

As with all of these questions, there is no single right answer here. In reality, you would first explore 

the data a bit, then try and compare a few models before settling on a final analysis. Below are just 

some ideas to get started. Let Yij be the BP for subject i at time j = 0, 1, 2, 3, 4. We could allow each 

subject to have a separate linear regression, so 

 

Yij = ai + bi*j + eij 

 

The random intercept for subject i has distribution ai ~ N(m,sa
2). The slope depends on treatment 

group xi = 1 if spin, xi=0 if not, so bi ~ N(c+d*xi,sb
2). To complete the Bayesian model we could pick 

conjugate priors m,c,d ~ N(0,100) and sa
2,sb

2 ~ InvGamma(0.1,0.1). 

 

 (b) How would you summarize the results? 

The assumption made here is that taking spin class doesn’t affect the BP at baseline (ai), but affects 

the slope of BP (bi) once the study starts. So, if d < 0 then spin class lowers the average slope, i.e., 

generally improves BP. I would compute the 95% interval for d and if it excludes zero conclude spin 

affects BP. 

 

 (c) Write JAGS code for this model 

   for(i in 1:100){for(j in 1:5){ 

      Y[i,j] ~ dnorm (a[i] + b[i]*j,sigy2inv) 

   }} 

   for(i in 1:100){ 

      a[i] ~ dnorm(m,siga2inv) 

      b[i] ~ dnorm(c + d*X[i],sigb2inv} 

  } 

  #priors… 

 

  



(2) A group of 10 ecologists is surveying a forest for red cockaded woodpeckers (RCP).  Each ecologist 

will walk along a different path and make 5 stops.  At each stop, they will record local conditions (tree 

density, elevation, etc.) and whether they see or hear an RCP.  The objective is to build a model for the 

types of habitat that are the most favorable to the RCP.      

(a) Describe a model and prior for these data 

Yij = 1 if ecologist i hears an RCP on stop j and Yij=0 otherwise. The response is binary and clustered 

by ecologist, so a mixed effects logistic regression model would be appropriate. 

 

Logit[Prob(Yij=1)] = b0 + b1*tree_densityij + b2*elevationij + ai 

 

where the random effects have distribution ai ~ Normal(0,s2). Uninformative priors are b0,b1,b2 ~ 

Normal(0,102) and s2 ~ InvGamma(0.1,0.1). 

 

(b) How would you summarize the results? 

We can test for covariate effects by comparing the posteriors of b1 and b2 to zero.  

(c) Write JAGS code for this model 

for(i in 1:10){for(j in 1:5){ 

      Y[i,j]            ~ dbern (p[i,j]) 

      logit(p[i,j]) = b0 + b1*tree_density[i,j] + b2*elevation[i,j] + a[i]  

}} 

for(i in 1:10){ 

      a[i] ~ dnorm(0,siga2inv) 

} 

     #priors… 

 

 

 

  



(3) In a study of the genetic determinants of smoking addiction, researchers sampled 1,000 people and 

asked whether they smoked.  For each subject, the also recorded 10,000 genetic markers.  The objective 

is to determine if any of the markers are associated with smoking addiction. 

(a) Describe a model and prior for these data 

Since the response is binary and there are many covariates, we could fit a logistic regression with 

Bayesian LASSO prior for the regression coefficients. 

 

(b) How would you summarize the results? 

I would conclude markers are important if their 95% posterior credible set excluded zero. 

(c) Write JAGS code for this model 

See listing 4.4 in the book. 

 

  



(4) To study the effect of an online advertising campaign by your company, you gather data for 1,000 

consumers and record the number of ads they have been exposed to (X) and the amount of money ($) 

they spent on your product in the past year (Y).  The data are plotted below. 

 

(a) Describe a model for these data 

The response variable Y is a mix of zeros and positive continuous response. So, I would build two 

models, one a logistic regression for whether the response is or is not zero, and then a log-linear 

regression for the non-zeros. So  

 

logit(Prob(Y>0)) = a0+a1X and for Y>0, log(Y) ~ Normal(b0+b1X, s2). 

 

For priors, a0,a1,b0,b1 ~ Normal(0,102) and s2 ~ InvGamma(0.1,0.1).  

 

(b) How would you summarize the results? 

The covariate affects the response if either a1 or b1 is non-zero. 

 

(c) Write JAGS code for this model 

Since the model for zero/non-zero and log(Y) do not share any parameters, you could run JAGS 

twice, separately.  First you would use all observations and let the response be Zi = 1 if Yi>0 and Zi=0 

if Yi=0.  This would be standard Bayesian logistic regression.  Second you could run JAGS using only 

the observations with Yi>0 and take the response as log(Yi). This would be standard Bayesian 

multiple regression. 

 

 

 

  



(5) Consider the class participation question about sports and missed days.   

(a) From the analysis in my answer, why can’t we conclude that playing sports causes an improvement in 

attendance? 

There could be a missing confounder (lurking variable). A variable is a confounder if it is correlated 

with both X and Y. So maybe playing sports has nothing to do with missing school, but SES is related 

to both attendance and sports and is thus a confounder. If you don’t include SES in the model, you 

would find an association between sports and attendance. But this would not be a causal 

relationship, but just an artifact of SES’ effect on both variables. 

 

(b) How would we have to modify the analysis to have a hope of establishing a causal relationship? 

You could add SES are a covariate, so 

 

Y ~ Poisson(exp(b0 + b1*X + b2*SES + random_effect)). 

 

Now b1 is the effect of sports after accounting for the effects of SES and so this would remove the 

influence of the confounder. Of course, unless we have a randomized experiment, it’s possible 

there are other missing confounders and so we should still be careful about declaring a causal 

effect. 

  

  



(6) Give at least three ways the glm function that performs non-Bayesian generalized linear models 

could be used in a Bayesian analysis. 

(1) Initial values for the MCMC routine 

(2) Empirical Bayesian priors 

(3) If the sample size is much larger than the number of parameters than we could use the Bayesian 

CLT and approximate the posterior using the GLM estimates are the approximate posterior mean 

and the GLM standard error as the approximation posterior standard deviation. 

 

 


