ST440/540 Applied Bayesian Analysis
 Lab activity for 2/26/2024

Announcements

There is a group formation survey due next Friday on Moodle

For 540 students, I posted the project description the course assignments page.
https://st540.wordpress.ncsu.edu/assignments/
The next step is an abstract with a brief project description due in a few weeks.

For 440 students, your final exam will be a group analysis of a problem I assign you. Please still fill out the group formation survey! However, you do not need to start thinking of a research topic because I will send the project after the second mid-term.

A. HOMEWORK AND CLASS PARTICIPATION SOLUTIONS

None this week

B. DISCUSSION QUESTIONS

(1) Recall that Bayes' rule is $p(\theta \mid Y)=f(Y \mid \theta) \pi(\theta) / m(Y)$. Explain why we never need to compute $m(Y)$ to perform Metropolis sampling. Your answer must include a formula!

Say θ_{1} is the candidate and θ_{0} is the previous value. The metropolis ratio is

$$
R=\frac{\mathrm{p}\left(\theta_{1} \mid \mathrm{Y}\right)}{\mathrm{p}\left(\theta_{0} \mid \mathrm{Y}\right)}=\frac{\mathrm{f}\left(\mathrm{Y} \mid \theta_{1}\right) \pi\left(\theta_{1}\right) / \mathrm{m}(\mathrm{Y})}{\mathrm{f}\left(\mathrm{Y} \mid \theta_{0}\right) \pi\left(\theta_{0}\right) / \mathrm{m}(\mathrm{Y})}=\frac{\mathrm{f}\left(\mathrm{Y} \mid \theta_{1}\right) \pi\left(\theta_{1}\right)}{\mathrm{f}\left(\mathrm{Y} \mid \theta_{0}\right) \pi\left(\theta_{0}\right)}
$$

and the constant $m(Y)$ cancels so we never need to compute it.
(2) Assume the model $\mathrm{Y} \mid \theta \sim \operatorname{Gamma}(\theta, 1)$ and prior $\theta \sim \operatorname{Uniform}(0,10)$. This is not a conjugate prior and so you will use Metropolis-Hastings sampling.
(a) What is a reasonable candidate distribution for θ ?
$\operatorname{Normal}\left(\theta_{0}, c^{2}\right)$ is fine, although other distributions with support $(0,10)$ might be more efficient.
(b) Give a formula for the acceptance probability (preferably in R code)

$$
R=\frac{\operatorname{dgamma}\left(Y, \theta_{1}, 1\right) * \operatorname{dunif}\left(\theta_{1}, 0,10\right)}{\operatorname{dgamma}\left(Y, \theta_{0}, 1\right) * \operatorname{dunif}\left(\theta_{0}, 0,10\right)}
$$

(c) What would you do if a candidate was outside the prior range $(0,10)$?

The prior PDF dunif $\left(\theta_{1}, 0,10\right)$ is zero and so the candidate is automatically rejected.
(d) How would you tune the candidate distribution? Be specific.

I would pick c until the acceptance probability is around 0.4.
Here is code if you're interested
Y <-5 \# Data (I just picked something to illustrate the code)
can_sd <- 5 \# Tuning parameter
iters <-5000 \# Number of iters
theta <- 1 \# Initial value
samps <- rep(theta,iters)
for(iter in 1:iters) \{
can <- rnorm(1,theta, can_sd)
if (can>0 \& can<10) \{
$R \quad<-(\operatorname{dgamma}(Y, \operatorname{can}, 1) * \operatorname{dunif}(\operatorname{can}, 0,10)) /$
(dgamma (Y, theta, 1)*dunif(theta, 0,10))
if(runif $(1)<\mathrm{R})$ \{theta $<-$ can\}
\}
samps[iter] <- theta
\}
acc_prob <- mean(samps[2:iters]!=samps[2:iters -1])
plot(samps,type="l", main=acc_prob)

These plots might help you visualize the problem:


```
par(mfrow=c(1,3))
theta <- seq(0,10,.01)
plot(theta,dgamma(2,theta,1),type="l",main="Y=2")
plot(theta,dgamma(5,theta,1),type="l",main="Y=5")
plot(theta,dgamma(8,theta,1),type="l",main="Y=8")
```

(3) Referring to the model in (2), assume that we used a Gaussian candidate distribution with mean set to the previous value of θ and standard deviation c. The chains are run for 1000 iterations. For each of these plots, how would you modify the value c ?

Case \#1 - Lower c because acceptance is too low (maybe try c = c*0.8)
Case \#2 - Increase c because acceptance is too high (maybe try c = c*1.2)
Case \#3 - Looks pretty good, run it longer

(4) For each trace plot below, at which iteration would you say the chain has converged?

Case \#1-1000	Case \#2-10K	Case \#3-5K?	Case \#4-1K?	Case \#5-1K?
Case \#6-5K	Case \#7-1	Case \#8-1	Case \#9-5K	

Case \# 1

MCMC iteration

Case \# 4

MCMC iteration

Case \# 7

MCMC iteration

Case \# 2

MCMC iteration

Case \# 5

MCMC iteration

Case \# 8
 MCMC iteration

Case \# 3
 MCMC iteration

MCMC iteration

Case \# 9

MCMC iteration
(5) Now instead of a single chain, two separate chains (one in red, one in black) are run with different starting values. For each case, select an iteration number T so that all samples after T from both chains can be kept and comment on how using multiple chains helped in this decision.

Case \#1-1000	Case \#2-10K+	Case \#3-5K	Case \#4-1	Case \#5-1
Case \#6-5K	Case \#7-1	Case \#8-1K	Case \#9-1K	

Case \# 1

Case \# 4

MCMC iteration

Case \# 7

MCMC iteration

Case \# 2

Case \# 5
 MCMC iteration

Case \# 8

Case \# 3

Case \# 6
 MCMC iteration

Case \# 9

(6) Consider the model $Y \mid \theta, \mathrm{b}$ ~ Binomial(n, θ), $\theta \mid \mathrm{b} \sim \operatorname{Beta}(\mathrm{b}, 1-\mathrm{b})$ and $\mathrm{b} \sim$ Uniform $(0,1)$.
(a) Specify initial values of θ and b.

See step 0 below
(b) What is the full conditional distribution of θ ?

See step 1 below
(c) The full conditional distribution of b does not have a nice form and therefore can't be updated using Gibbs sampling. Sketch a Metropolis-within-Gibbs sampler for the joint posterior of (θ, b).
(0) Set theta $=1 / 2$ and $b=1 / 2$ (or theta $=b=Y / n$)
(1) Update theta given b as theta $\mid b, Y \sim \operatorname{Beta}(Y+b, n-Y+1-b)$
(2) Update b given theta as

- Propose b_new |b_old ~ beta with mean b_old

Repeat steps (1) and (2) S times.
Here are code and results

```
n <- 50
Y <- 20
iters <- 10000
tuning <- 1 # MH tuning parameter (see plots at the end)
theta <- 0.5 # Initial values
b <- 0.5
samps <- matrix(0,iters,2)
samps[1,] <- c(theta,b)
colnames(samps) <- c("theta","b")
for(iter in 1:iters){
    # Gibbs for theta
    theta <- rbeta(1,Y+b,n-Y+1-b)
    # MH for b
    can <- rbeta(1,tuning*b,tuning*(1-b))
    R1 <- dbeta(theta,can,1-can)*
                dunif(can,0,1)*
                dbeta(b,tuning*can,tuning* (1-can))
    R2 <- dbeta(theta,b,1-b)*
                dunif(b,0,1)*
                dbeta(can,tuning*b,tuning*(1-b))
    R <- R1/R2
    if(runif(1)<R) {b<-can}
    samps[iter,] <- c(theta,b)
}
```

```
acc_prob <- colMeans(samps[2:iters,]!=samps[2:iters -1, ])
> acc_prob
    theta b
1.0000000 0.3163316
> colMeans(samps)
theta b
> apply(samps,2,quantile,c(0.025,0.975))
    theta b
2.5% 0.2698998 0.07935664
97.5% 0.5384169 0.89343295
plot(samps[,1],ylab=expression(theta),type="l")
plot(samps[,2],ylab=expression(b),type="l")
plot(samps,xlab=expression(theta),ylab=expression(b))
```


\# Plots of the candidate distribution
b <- seq(0,1,.01)
tuning <-10; old <- . 3
plot(b,dbeta(b,tuning*old,tuning*(1-old)),type="I")
tuning <-10; old <- . 7
plot(b,dbeta(b,tuning*old,tuning*(1-old)),type="I")
tuning <-100; old <- . 7
plot(b,dbeta(b,tuning*old,tuning*(1-old)),type="|")

