
ST440/540 Applied Bayesian Analysis 
Lab activity for 2/26/2024 

 

Announcements 
 

There is a group formation survey due next Friday on Moodle 

 

For 540 students, I posted the project description the course assignments page.  

                       https://st540.wordpress.ncsu.edu/assignments/ 

The next step is an abstract with a brief project description due in a few weeks.                

 

For 440 students, your final exam will be a group analysis of a problem I assign you.  Please still fill 

out the group formation survey! However, you do not need to start thinking of a research topic 

because I will send the project after the second mid-term. 

 

A. HOMEWORK AND CLASS PARTICIPATION SOLUTIONS 
 

None this week 
  



B. DISCUSSION QUESTIONS 
 

(1) Recall that Bayes’ rule is p(θ|Y) = f(Y|θ)π(θ)/m(Y).  Explain why we never need to compute m(Y) to 

perform Metropolis sampling.  Your answer must include a formula! 

Say θ1 is the candidate and θ0 is the previous value. The metropolis ratio is 

𝑅 =  
p(θ1|Y)

p(θ0|Y)
 =  

f(Y|θ1)π(θ1)/m(Y)

f(Y|θ0)π(θ0)/m(Y)
 =  

f(Y|θ1)π(θ1)

f(Y|θ0)π(θ0)
 

and the constant m(Y) cancels so we never need to compute it. 

 

(2) Assume the model Y| θ ~ Gamma(θ,1) and prior θ ~ Uniform(0,10).  This is not a conjugate prior and 

so you will use Metropolis-Hastings sampling.   

(a) What is a reasonable candidate distribution for θ?  

Normal(θ0, 𝑐2) is fine, although other distributions with support (0,10) might be more efficient. 

(b) Give a formula for the acceptance probability (preferably in R code) 

𝑅 =  
𝑑𝑔𝑎𝑚𝑚𝑎(𝑌, θ1, 1) ∗ 𝑑𝑢𝑛𝑖𝑓(θ1, 0,10)

𝑑𝑔𝑎𝑚𝑚𝑎(𝑌, θ0, 1) ∗ 𝑑𝑢𝑛𝑖𝑓(θ0, 0,10)
 

(c) What would you do if a candidate was outside the prior range (0,10)? 

The prior PDF 𝑑𝑢𝑛𝑖𝑓(θ1, 0,10) is zero and so the candidate is automatically rejected. 

(d) How would you tune the candidate distribution?  Be specific. 

I would pick c until the acceptance probability is around 0.4.  

Here is code if you’re interested 
Y      <- 5    # Data (I just picked something to illustrate the code) 

can_sd <- 5    # Tuning parameter 

iters  <- 5000 # Number of iters 

theta  <- 1    # Initial value 

samps  <- rep(theta,iters) 

for(iter in 1:iters){ 

  can <- rnorm(1,theta,can_sd) 

  if(can>0 & can<10){ 

     R   <- (dgamma(Y,can,1)*dunif(can,0,10))/ 

            (dgamma(Y,theta,1)*dunif(theta,0,10)) 

     if(runif(1)<R){theta <- can} 

  } 

  samps[iter] <- theta 

} 

acc_prob <- mean(samps[2:iters]!=samps[2:iters -1]) 

plot(samps,type="l",main=acc_prob) 



 
 

These plots might help you visualize the problem:

 
par(mfrow=c(1,3)) 

theta <- seq(0,10,.01) 

plot(theta,dgamma(2,theta,1),type="l",main="Y=2") 

plot(theta,dgamma(5,theta,1),type="l",main="Y=5") 

plot(theta,dgamma(8,theta,1),type="l",main="Y=8") 

 

  



(3) Referring to the model in (2), assume that we used a Gaussian candidate distribution with mean set 

to the previous value of θ and standard deviation c.  The chains are run for 1000 iterations.  For each of 

these plots, how would you modify the value c? 

Case #1 – Lower c because acceptance is too low (maybe try c = c*0.8) 

Case #2 – Increase c because acceptance is too high (maybe try c = c*1.2) 

Case #3 – Looks pretty good, run it longer   

   

 

  



(4) For each trace plot below, at which iteration would you say the chain has converged? 

Case #1 - 1000 Case #2 -10K Case #3 - 5K? Case #4 - 1K?  Case #5 – 1K? 

Case #6 -5K Case #7 - 1 Case #8 - 1 Case #9 – 5K 

 

 

  



(5) Now instead of a single chain, two separate chains (one in red, one in black) are run with different 

starting values. For each case, select an iteration number T so that all samples after T from both chains 

can be kept and comment on how using multiple chains helped in this decision. 

Case #1 - 1000 Case #2 -10K+ Case #3 - 5K Case #4 - 1  Case #5 – 1 

Case #6 -5K Case #7 - 1 Case #8 - 1K Case #9 – 1K 

 

 

  



(6) Consider the model Y|θ,b ~ Binomial(n,θ), θ|b ~ Beta(b,1-b) and b ~ Uniform(0,1).   

(a) Specify initial values of θ and b. 

See step 0 below 

(b) What is the full conditional distribution of θ? 

See step 1 below 

 (c) The full conditional distribution of b does not have a nice form and therefore can’t be updated using 

Gibbs sampling.  Sketch a Metropolis-within-Gibbs sampler for the joint posterior of (θ,b). 

(0) Set theta = ½ and b = ½ (or theta = b= Y/n) 

(1) Update theta given b as theta|b,Y ~ Beta(Y+b,n-Y+1-b) 

(2) Update b given theta as 

- Propose b_new |b_old ~ beta with mean b_old 

Repeat steps (1) and (2) S times. 

Here are code and results 

n      <- 50 

Y      <- 20 

iters  <- 10000 

tuning <- 1       # MH tuning parameter (see plots at the end) 

 

theta  <- 0.5 # Initial values 

b      <- 0.5 

 

samps           <- matrix(0,iters,2) 

samps[1,]       <- c(theta,b) 

colnames(samps) <- c("theta","b") 

 

for(iter in 1:iters){ 

   

  # Gibbs for theta 

  theta <- rbeta(1,Y+b,n-Y+1-b) 

 

  # MH for b 

  can <- rbeta(1,tuning*b,tuning*(1-b)) 

  R1  <- dbeta(theta,can,1-can)* 

         dunif(can,0,1)* 

         dbeta(b,tuning*can,tuning*(1-can)) 

  R2  <- dbeta(theta,b,1-b)* 

         dunif(b,0,1)* 

         dbeta(can,tuning*b,tuning*(1-b)) 

  R   <- R1/R2 

  if(runif(1)<R){b<-can} 

 

  samps[iter,] <- c(theta,b) 

} 

 

 

 



acc_prob <- colMeans(samps[2:iters,]!=samps[2:iters -1, ]) 

> acc_prob 

    theta         b  

1.0000000 0.3163316  

>  

> colMeans(samps) 

    theta         b  

0.4004075 0.4765602  

>  

> apply(samps,2,quantile,c(0.025,0.975)) 

          theta          b 

2.5%  0.2698998 0.07935664 

97.5% 0.5384169 0.89343295 

 

plot(samps[,1],ylab=expression(theta),type="l") 

plot(samps[,2],ylab=expression(b),type="l") 

plot(samps,xlab=expression(theta),ylab=expression(b)) 

 

 

 

 

# Plots of the candidate distribution 

b <- seq(0,1,.01) 

tuning <- 10; old <- .3 

plot(b,dbeta(b,tuning*old,tuning*(1-old)),type="l") 

tuning <- 10; old <- .7 

plot(b,dbeta(b,tuning*old,tuning*(1-old)),type="l") 

tuning <- 100; old <- .7 

plot(b,dbeta(b,tuning*old,tuning*(1-old)),type="l") 

 

   


