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Model Definition: 

The enhanced vegetation index (EVI) is a satellite-derived measurement that quantifies vegetation 

greenness at a certain period in time. For this report, the data contains EVI measurements for a 

single spatial location from 1984 to 2019. Let Yi represent the EVI measurement at time ti and µ(t) 

be the true EVI curve. Yi values for this dataset, which are noisy values of µ(ti), range from 0 to 1. 

Since the support Yi is the interval (0,1), the best likelihood is the beta distribution. Additionally, 

many papers have proposed a double-logistic function to model µ(t) (Elmore et al., 2012; Melass 

et al., 2013; Gao et al., 2021). Therefore, this report will expand on previous research and examine 

the following model (denoted as Model 1):       

Yi | µ(ti) ~ Beta[r*µ(ti) , r*(1- µ(ti))] 

µ(ti) = m1j + (m2j – m7ti)[
1

1+𝑒𝑥𝑝((𝑚3𝑗−𝑡𝑖)∗𝑚4𝑗)
 - 

1

1+𝑒𝑥𝑝((𝑚5𝑗−𝑡𝑖)∗𝑚6𝑗)
] 

m1j ~ U(0,1), seasonal minimum greenness 

m2j ~ U(m1j,1), seasonal greenness amplitude 

m3j ~ U(1,366), start of spring 

m5j ~ U(m3j,366), start of autumn 

m4j , m6j ~ N(0,102), slopes of spring and autumn 

m7j ~ N(0,102), decrease in EVI during summer 

rj ~ Gamma(0.1,0.1), controls concentration around µ(ti) for Yi 

We use uninformative priors for each of the variables within the true EVI curve. For several of the 

variables, we introduce a restriction in the support. For example, the start of autumn must come 

after the start of spring. Also, note that all priors will vary by year j and ti represents the DOY. 

Finally, we defined Yi | µ(ti) such that E[Yi | µ(ti)] = µ(ti). 

MCMC Convergence: 

For the model described in the previous section, we will utilize the software package RJAGS to 

perform the Metropolis-Hastings algorithm in order to sample from the posterior distribution of 

µ(ti) | Yi and ultimately assess the convergence of prior distributions in the model.  
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Using 10,000 burn-in samples and 20,000 iterations, we obtain effective sample size and Gelman-

Rubin values (not shown) that indicate the m1, m3, m4, m5, m6, and r priors converge for most of 

the years from 1984-2019, but the m2 and m7 priors do not have the best convergence.  

Model Comparisons: 

Model 1 will be compared to two simpler models using DIC and WAIC metrics; both models 

have the same likelihood for Yi, but Model 2 has logit(µ(ti)) = b0j + b1jti + b2jti
2 and Model 3 has 

logit(µ(ti)) = b0jsin(b1j(ti-b2j)) + b3j where bij ~ N(0,102) and j is the year for both models. 

Metric Model 1 Model 2 Model 3 

DIC -1932 -1267 -1616 

DIC Penalty 596 208 652 

Penalized Deviance -1336 -1059 -964 

WAIC -1729 -1119 -1498 

Pw 139 127 129 

 

Figure 1 summarizes the distribution of the effective sample size from 1984-2019 for each prior 

distribution. Ultimately, we see both the m2 and m7 distributions are entirely less than 1000. 

Table 1 shows the calculated DIC and WAIC metrics for all 3 models  
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Model 1 has smaller DIC and WAIC values compared to Models 2 and 3 and has only a slightly 

larger effective model size, therefore we conclude that our initial model is the best fit for the data. 

Model Fit: 

Using the previously described MCMC algorithm, we obtain estimates of the priors for each year 

and use these values to estimate the yearly true EVI curve based on the function µ(ti) given in 

Model 1.   

 

 

After plotting the estimate of µ(t), we see that the model fits the dataset fairly well except for years 

where there are fewer EVI measurements; for years with a lower number of measurements, we 

notice higher uncertainty by observing the wider confidence interval for these periods.  

GUT Analysis: 

For each iteration of the MCMC algorithm, we can use our current estimate of µ(t) to approximate 

the yearly GUTs and ultimately use these values over all iterations to summarize the posterior 

distribution of GUT for each year.  

  

Figure 2 shows the estimate of µ(t) for the entire dataset along with a 95% confidence interval. 

The 802 EVI measurements are also shown to get a sense of how well the model fits the data.  
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Using 20,000 iterations and estimates of µ(t), we obtain the GUT posterior distributions by year 

and notice that there is generally more uncertainty in the earlier years (1984-1997) compared to 

more recent years (1998-2019) since there is less data from the early years to train the model on.  

Time-trend Analysis: 

After finding the posterior distribution of GUT for each year, we will fit a linear regression model 

on the medians of the distributions to see how the median GUT value change across the years. 

 

From the regression, we obtain a slope of -0.85 with a p-value of 0.002 which indicates the median 

GUT has decreased across the years, therefore vegetation is getting greener earlier in the year.  

 

Figure 3 shows the posterior distribution of GUT by year. Note that not all iterations will have µ(t) > 0.5 

during a specific year, therefore this analysis only considers iterations where the estimate of µ(t) has a GUT. 

Figure 4 shows the regression of median GUT values from 1984-2019 along with the regression equation. 
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Code 

setwd('C:/Users/ryant/Documents/Statistics/ST540/Midterm_2') 

library(rjags) 

df <- read.csv('EVI_Data.csv') 

Y <- df$EVI 

t <- df$DOY 

n <- length(Y) 

yrs <- df$Year - 1983 

unique_years <- unique(df$Year) 

k <- length(unique_years) 

continuous_time <- df$Year + df$DOY/366 

 

#Fit model 

model_string <- textConnection("model{ 

                for (i in 1:n){ 

                  Y[i] ~ dbeta(r[yrs[i]]*mu[i],r[yrs[i]]*(1-mu[i])) 

                  mu[i] <- m1[yrs[i]] + (m2[yrs[i]]-m7[yrs[i]]*t[i])*(1/(1+exp((m3[yrs[i]]-

t[i])*m4[yrs[i]])) - 1/(1+exp((m5[yrs[i]]-t[i])*m6[yrs[i]]))) 

                } 

                 

                #for each i, we have to account for the year 

                for (j in 1:k){ 

                  m1[j] ~ dunif(0,1) 

                  m2[j] ~ dunif(m1[j],1) 

                  m3[j] ~ dunif(1,366) 

                  m4[j] ~ dnorm(0,.01) 

                  m5[j] ~ dunif(m3[j],366) 

                  m6[j] ~ dnorm(0,.01) 

                  m7[j] ~ dnorm(0,.01) 

                  r[j] ~ dgamma(.1,.1) 
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                } 

                #WAIC Calculations 

                for(i in 1:n){ 

                  like[i] <- dbeta(Y[i],r[yrs[i]]*mu[i],r[yrs[i]]*(1-mu[i])) 

                } 

}") 

data = list(Y=Y,t=t,n=n,yrs=yrs,k=k) 

model <- jags.model(model_string,data=data,n.chains=2) 

 

#Burn in 10000 samples 

update(model, 10000) 

 

#Set paramaters and get samples 

params = c('m1','m2','m3','m4','m5','m6','m7','r') 

samples <- coda.samples(model, variable.names=params, n.iter=20000,thin=10) 

mu_samples <- coda.samples(model,variable.names=c('mu'),n.iter=20000) 

summary(samples) 

summary(mu_samples) 

 

#Compute DIC 

DIC <- dic.samples(model,n.iter=20000,n.thin=10) 

#Compute WAIC 

waic   <- coda.samples(model,variable.names=c("like"), n.iter=20000,n.thin=10) 

like   <- waic[[1]] 

fbar   <- colMeans(like) 

P      <- sum(apply(log(like),2,var)) 

WAIC   <- -2*sum(log(fbar))+2*P 

 

#Compute effective sample size and gelman stat for each year  

sample_size <- list() 
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gelman_stat <- list() 

x <- gelman.diag(samples) 

for(i in 1:8){ 

  sample_size[[i]] <- effectiveSize(samples)[(36*i-35):(36*i)]  

  gelman_stat[[i]] <- x[[1]][(36*i-35):(36*i)]  

} 

 

#Plot effective sample size 

names(sample_size) <- c('m1','m2','m3','m4','m5','m6','m7','r') 

boxplot(sample_size,main='Yearly Effective Sample Size of Priors',ylab='Effective Sample 

Size', 

        xlab='Variable') 

 

#Fit true curve and data 

mu <- summary(mu_samples) 

mu_mean <- mu$statistics[,1] 

lower_mu <- mu$quantiles[,1] 

upper_mu <- mu$quantiles[,5] 

plot(continuous_time,mu_mean,type='l',ylim=c(0,1),lwd=3,xlab='Year',ylab='EVI', 

     main='Estimate of True EVI Curve with 95% CI') 

polygon(c(continuous_time,rev(continuous_time)),c(lower_mu,rev(upper_mu)),col = 

4,density=10) 

points(continuous_time,df$EVI,col=2) 

legend(x='topright',legend=c('EVI Curve Estimate','95% CI','EVI 

Measurements'),lty=c(1,1,NA),col=c(1,4,2),pch=c(NA,NA,1)) 

 

#Fit model 2 

model_string_2 <- textConnection("model{ 

                for (i in 1:n){ 

                  Y[i] ~ dbeta(r[yrs[i]]*mu[i],r[yrs[i]]*(1-mu[i])) 

                  logit(mu[i]) <- b0[yrs[i]] + b1[yrs[i]]*t[i] + b2[yrs[i]]*t[i]^2 
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                } 

                #for each i, we have to account for the year 

                for (j in 1:k){ 

                  b0[j] ~ dnorm(0,.01) 

                  b1[j] ~ dnorm(0,.01) 

                  b2[j] ~ dnorm(0,.01) 

                  r[j] ~ dgamma(.1,.1) 

                } 

                #WAIC Calculations 

                for(i in 1:n){ 

                  like[i] <- dbeta(Y[i],r[yrs[i]]*mu[i],r[yrs[i]]*(1-mu[i])) 

                } 

}") 

model2 <- jags.model(model_string_2,data=data,n.chains=2) 

 

#Burn in 10000 samples 

update(model2, 10000) 

 

#Calculate DIC and WAIC 

DIC2 <- dic.samples(model2,n.iter=20000,n.thin=10) 

waic2   <- coda.samples(model2,variable.names=c("like"), n.iter=20000,n.thin=10) 

like2   <- waic2[[1]] 

fbar2   <- colMeans(like2) 

P2      <- sum(apply(log(like2),2,var)) 

WAIC2   <- -2*sum(log(fbar2))+2*P2 

#Fit model 3 

model_string_3 <- textConnection("model{ 

                for (i in 1:n){ 

                  Y[i] ~ dbeta(r[yrs[i]]*mu[i],r[yrs[i]]*(1-mu[i])) 

                  logit(mu[i]) <- b0[yrs[i]]*sin(b1[yrs[i]]*(t[i]-b2[yrs[i]]))+b3[yrs[i]]  
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                } 

                #for each i, we have to account for the year 

                for (j in 1:k){ 

                  b0[j] ~ dnorm(0,.01) 

                  b1[j] ~ dnorm(0,.01) 

                  b2[j] ~ dnorm(0,.01) 

                  b3[j] ~ dnorm(0,.01) 

                  r[j] ~ dgamma(.1,.1) 

                } 

                #WAIC Calculations 

                for(i in 1:n){ 

                  like[i] <- dbeta(Y[i],r[yrs[i]]*mu[i],r[yrs[i]]*(1-mu[i])) 

                } 

}") 

model3 <- jags.model(model_string_3,data=data,n.chains=2) 

 

#Burn in 10000 samples 

update(model3, 10000) 

 

#Calculate DIC and WAIC 

DIC3 <- dic.samples(model3,n.iter=20000,n.thin=10) 

waic3   <- coda.samples(model3,variable.names=c("like"), n.iter=20000,n.thin=10) 

like3   <- waic3[[1]] 

fbar3 <- colMeans(like3) 

P3      <- sum(apply(log(like3),2,var)) 

WAIC3   <- -2*sum(log(fbar3))+2*P3 

 

#Fit mu for each iteration and calculate GUT 

mu_iterations <- mu_samples[[1]] 

time <- data.frame(matrix(nrow=20000,ncol=k)) 
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names(time) <- unique_years 

for(i in 1:k){ 

  print(i) 

  for(j in 1:20000){ 

    #first calculate the indices that correspond to each year 

    year_index <- which(df$Year == unique_years[i])  

    #find mu estimate and doy of estimate 

    est <- mu_iterations[j,year_index] 

    doy <- t[year_index] 

    #use approx fn to find first time mu > .5 

    approx <- approx(doy,est,n=1000) 

    gut <- min(which(approx$y > .5)) 

    #save first time mu > .5 

    time[j,i] <- approx$x[gut] 

  } 

} 

boxplot(time,xlab='Year',ylab='GUT',main='Yearly GUT Posterior 

Distributions',ylim=c(120,180)) 

 

#Perform regression to see if median GUT changes 

medians = data.frame(x = unique_years,y = sapply(time, median, na.rm=TRUE)) 

regression <-lm(y ~ x, data=medians) 

plot(unique_years,medians$y,xlab='Year',ylab='Median GUT',main='Regression of Yearly 

Median GUT Values', ylim=c(100,200)) 

abline(regression) 

coef <- round(coef(regression), 2) 

text(2015,190,  paste("Y = ", coef[1], "-", abs(coef[2]), "* year")) 

summary(regression) 


