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Introduction

There is heated discussion of Olympic Games that Olympic atheletes from the host country would take more

gold medals in summer Olympics than they did when they were competing in other countries. Based on the

previous data, it does seem that countries that are hosting the Summer Olympics will tend to win more medals.

This could come from many results. However, the expected number of medals per participant for each country in

Olympics has not been investigated yet. In this paper, we compared the expected number of medals per participant

between countries that were hosting and were not using medal and participant data from 1952 to 2021.

1 Aggregate Analysis

To start with, according to the definition, we would have Y1 =
∑18

i=1 Yi1 = 1016 and N1 =
∑18

i=1 Ni1 = 7979. Let

λ1 be the the expected number of medals per participant in their home country. The data could be modelled with

a Poisson distribution with Y1 = 1016 successes in N1 = 7979 events. Therefore, we have the likelihood function

for Y1 given λ1

Y1|λ1 ∼ Poisson(N1λ1).

Here, we choose a Gamma prior

λ1 ∼ Gamma(a = 0.1, b = 0.1)

as a uninformative conjugate prior because it has a high variance var(λ1) = a
b2 = 10 compared to the range of

expected value. Therefore, we have the posterior distribution

p(λ1|Y1) ∝ f(Y1|λ1)π(N1λ1) ∝ exp(−N1λ1)λ
N1Y1
1 λa−1

1 exp(bλ)

⇒ p(λ1|Y1) ∝ exp(−(N1 + b)λ1)λ
Y1+a−1
1

⇒ λ1|Y1 ∼ Gamma(Y1 + a,N1 + b)

Similarly, we could have

λ0|Y0 ∼ Gamma(Y0 + a,N0 + b)

The distributions of these two λ were shown in Figure 1.

Figure 1: The distribution of λ1 and λ0. Here, red lines stands for λ0 and blue lines stands for λ1
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Here, the main assumption is that every participant has the same rate to get a medal and that the probability for

every participant to get medals is independent. Under the purpose of analyzing aggregate data, we could believe

that these assumption were valid.

2 Hypothesis Test

H0 : λ1 − λ0 > 0, that is, the the expected number of medals per participant won by home country in Olympics

is larger than that of the same country won in the previous Olympics.

Hα : λ1 − λ0 ≤ 0, that is, the the expected number of medals per participant won by home country in Olympics

is no larger than that of the same country won in the previous Olympics.

We can use the Monte Carlo sampling to perform the hypothesis test and calculate the difference and its distribution

from posterior distributions. The distribution of the difference between λ1 and λ0 from 100,000 MC sampling was

shown in Figure 2. The probability of λ1 > λ0 in MC sampling data is 0.0052. This probability is < 0.95.

Therefore, we do not reject the null hypothesis. In other words, we are only 0.52% certain that λ1 > λ0.

Figure 2: Distribution of λ1 − λ0 from MC sampling

We could set a2 = b2 = 1, a3 = b3 = 10 and a4 = b4 = 0.01. Based on these parameter values probability for each

the sampling set was shown in table 1. The result showed that when we changed a and b, the probability changed

a = b = 0.1 a = b = 1 a = b = 10 a = b = 0.01

probability of λ1 > λ0 0.0052 0.00521 0.0039 0.0049

Table 1: probability of λ1 > λ0 under different a and b value

a bit, especially when a and b increase, which would causing the variance of the distribution close to the range of

expected value of λ. Therefore, this result was somewhat sensitive to the prior.

3 Prediction

By looking at the scatterplot between Ni0 and Ni1 (Figure 3), we could see a correlation between the number of

participant for each country in Olympics when they were hosting and the number in the previous one. Using this

data distribution pattern, we could make a regression model and use the model to predict the participants in 2024

in France based on their 2021’s participant number, which is 561.

When predicting, we still assume that the success rate for each athlete is the same including athletes in France when

they’re hosting. Therefore, they share a same λ1 distribution λ1 ∼ Gamma(Y1 + a,N1 + b). To predict the medal

number in 2024 for France, we could use the Posterior Predictive Distribution (PPD) method. Using MC sampling,
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Figure 3: Scatterplot between Ni0 and Ni1

we could generate 100,000 samples λ
(1)
1 , λ

(2)
1 ...λ

(100,000)
1 from the posterior. Since we have Y ∗(s) ∼ f(Y |λ(s)

1 ) for

each λ
(s)
1 , the posterior predictive mean is approximated by the sample mean of Y ∗(s). Here,

f(Y |λ(s)
1 ) ∼ Poisson(N1λ

(s)
1 ).

Through MC sampling, we could have Ȳ ∗ = 71, which is the posterior predictive value for the medal number of

France in 2024 Olympics. The 95% credible interval is (55, 89). The distribution of Y ∗ was shown in Figure 4.

Figure 4: Distribution of Y ∗

4 Country-specific analysis

For each country i, we have the likelihood

Yi1|λi1 ∼ Poisson(Ni1λi1), Yi0|λi0 ∼ Poisson(Ni0λi0),

which is the medal numbers given the number of participants for hosting and the previous Olympics. The conjugate

priors

λi1 ∼ Gamma(a = 0.1, b = 0.1), λi0 ∼ Gamma(a = 0.1, b = 0.1).

indicate the uninformative distribution of λi1 and λi0 Therefore, we would have the posterior of the rate of winning

medals for each participant in each country.

λi1|Yi1 ∼ Gamma(Yi1 + a,Ni1 + b), λi1|Yi0 ∼ Gamma(Yi0 + a,Ni0 + b).
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Therefore, we would have ri =
λi1

λi0
, (i = 1, 2, ..., 15) for 15 countries. Using MC sampling, we could generate an

approximate distribution of ri (Figure 5).

Figure 5: Distribution of ri

However, it would be difficult to estimate the home-country advantage difference by only looking at their distri-

bution. Hence, we could consider their 95% CI to compare their difference, which were shown in table 2.

FIN AUS ITA JPN MEX FRG CAN URS USA KOR ESP GRE CHN GBR BRA

2.5% 0.26 0.70 0.42 0.57 0.64 0.62 0.44 1.05 0.91 0.44 1.18 0.19 0.75 0.55 0.30

97.5% 0.82 1.39 1.17 1.12 83.71 1.67 3.93 1.64 1.32 1.38 11.03 0.86 1.40 1.16 1.12

Table 2: 95% CI for each ri

We can also do pair-wise analysis, calculating the 95% CI for every ri − rj (i = 1, ..., 15, j = 1, ..., 15, i ̸= j).

Twenty-seven CIs out of
(
15
2

)
= 105 did not contain 0 (data not shown, see the code in appendix). All these

evidence supported that the ratio r between the winning rate will differ from country to country.

5 Conclusions

In this paper, we discussed whether there is a home-country advantage in Olympic Games. If we only look at the

number of medal that each country gets in Olympics, we might draw the conclusion that there was a home-country

advantage. However, if we took the number of participants into consideration and compared the rate of winning

a medal for each participants, our results showed that one country will perform no better when it is hosting the

Olympics. That is because that when a country is hosting the Olympics, the number of participants would also

increase dramatically. Furthermore, if we explore the country-specific data, for the 15 countries in the data set,

the ratios of the rates of winning medals in the Olympics they were hosting and in the previous one were also

different from each other. Some countries, like USA, would have higher ratio, indicating a stronger home-country

advantage.

However, there were also some limitation in this paper. Firstly, we assumed that every participant had the same

rate of winning the medal in the aggregate analysis, which is not realistic. In other words, in the future work

when we discuss the home-country advantage, we should do it case by case or classify those countries into different

categories based on their competitiveness for aggregate analysis and also separate athletes when we do country-

specific analysis to see the home-country advantage. Secondly, in this study, we only considered the previous

Olympics performance for a country when comparing to the Olympics that was hosted by that country. If we

want to perform a more comprehensive analysis, we should also consider a country’s performance throughout all

Olympics.
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1. Aggregate analisys

Y1i <- c(22,35,36,29,9,40,11,195,174,33,22,101,58,16,100,65,19,51)
Y0i <- c(24,11,25,18,1,26,5,125,94,19,4,108,41,13,63,47,17,41)
N1i <- c(258,294,280,328,275,423,385,489,522,401,422,647,617,426,599,530,462,621)
N0i <- c(129,81,135,162,94,275,208,410,396,175,229,545,417,140,384,304,236,395)

Y1 <- sum(Y1i)
N1 <- sum(N1i)

a <- 0.1
b <- 0.1

A1 <- Y1 + a
B1 <- N1 + b

# lambda1_hat <- A1 / B1

Y0 <- sum(Y0i)
N0 <- sum(N0i)

A0 <- Y0 + a
B0 <- N0 + b

# lambda0_hat <- A0 / B0
x <- seq(0.1,0.2,0.0001)
lambda <- rep(x,2)
p <- c(dgamma(x,A1,B1),dgamma(x,A0,B0))
group <- c(rep(’lambda1’,length(x)),rep(’lambda0’,length(x)))
df <- data.frame(lambda=lambda,p=p,group=group)

library(ggplot2)
g <- ggplot(df, aes(x=lambda,y=p,group=group)) + geom_line(aes(color=group)) +

theme_bw() + theme(legend.title = element_blank())
g
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2. Hypothesis test

S <- 100000
lambda_0 <- rgamma(S, A0, B0)
lambda_1 <- rgamma(S, A1, B1)
mean(lambda_1 > lambda_0)

## [1] 0.00501

hist(lambda_1-lambda_0, xlab = expression(lambda[1]-lambda[0]), main = NULL)
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a2 <- 1
b2 <- 1

lambda_0_2 <- rgamma(S, Y0 + a2, N0 + b2)
lambda_1_2 <- rgamma(S, Y1 + a2, N1 + b2)
mean(lambda_1_2 > lambda_0_2)

## [1] 0.00538

a4 <- 10
b4 <- 10

lambda_0_4 <- rgamma(S, Y0 + a4, N0 + b4)
lambda_1_4 <- rgamma(S, Y1 + a4, N1 + b4)
mean(lambda_1_4 > lambda_0_4)

## [1] 0.00416

a3 <- 0.01
b3 <- 0.01

lambda_0_3 <- rgamma(S, Y0 + a3, N0 + b3)
lambda_1_3 <- rgamma(S, Y1 + a3, N1 + b3)
mean(lambda_1_3 > lambda_0_3)

## [1] 0.0053
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3. Prediction

plot(N0i,N1i)
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model.medal <- lm(N1i ~ N0i)
round(predict.lm(model.medal,newdata = data.frame(N0i=398)))

## 1
## 561

assume there are 561 participants in 2024 in France.

N1_f <- 561
# lambda_1 <- rgamma(S, 33, 398)
# Ystar <- rpois(S, lambda_1)*N1_f
# round(mean(Ystar))

lambda_1 <- rgamma(S, Y1, N1)
Ystar <- rpois(S, lambda_1*N1_f)
round(mean(Ystar))

## [1] 71
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hist(Ystar,xlab = ’Y*’,main = NULL)
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quantile(Ystar,c(0.025,0.975))

## 2.5% 97.5%
## 55 89

4. Country-specific analisys

Y1_country <- c(22,93,36,80,9,40,11,195,275,33,22,16,100,65,19)
Y0_country <- c(24,52,25,59,1,26,5,125,202,19,4,13,63,47,17)
N1_country <- c(258,911,280,949,275,423,385,489,1169,401,422,426,599,530,462)
N0_country <- c(129,498,135,557,94,275,208,410,941,175,229,140,384,304,236)
country <- c(’Finlan’,’Australia’,’Italy’,’Japan’,’Mexico’,’West Germany’,’Canada’,’Soviet Union’,

’United States’,’South Korea’,’Spain’,’Greece’,’China’,’Great Britain’,’Brazil’)

df <- c()
for (i in 1:15) {

a <- b <- 0.1
lambda1 <- rgamma(S, Y1_country[i]+a, N1_country[i]+b)
lambda0 <- rgamma(S, Y0_country[i]+a, N0_country[i]+b)
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r <- lambda1/lambda0

df <- cbind(df,r)
}

r_country_CI <- round(apply(df, 2, function(x){
return(quantile(x,c(0.025,0.975)))

}),2)

df <- as.data.frame(df)
colnames(df) <- country

library(reshape2)
df2 <- melt(df, variable.name = ’country’, value.name = ’r’)

library(ggplot2)
g <- ggplot(df2, aes(x=r,fill=country)) + geom_histogram(alpha=0.5,position = ’identity’)+

# stat_bin(binwidth = 0.5) +
xlim(c(0,5)) + theme_classic()

g
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c1 <- c()
c2 <- c()
q_2.5 <- c()
q_97.5 <- c()
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for (i in 1:14) {
for (j in (i+1):15) {

l <- quantile(df[[i]] - df[[j]],c(0.025,0.975))[1]
u <- quantile(df[[i]] - df[[j]],c(0.025,0.975))[2]
c1 <- c(c1, country[i])
c2 <- c(c2, country[j])
q_2.5 <- c(q_2.5, round(l,2))
q_97.5 <- c(q_97.5, round(u,2))

}
}

diff <- as.data.frame(cbind(c1,c2,q_2.5,q_97.5))
diff$q_2.5 <- as.numeric(diff$q_2.5)
diff$q_97.5 <- as.numeric(diff$q_97.5)

diff_sig <- diff[(diff$q_2.5)*(diff$q_97.5)>0,]
nrow(diff_sig)

## [1] 27
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