Andy Rivas ST540 Applied Bayesian Analysis Midterm #1

Introduction

Every four years the world’s greatest athletes gather together at a host country to compete in a variety of
sports to decide who are the three best performers to be awarded a medal for their representing country. A
common question that has been asked about the Olympics is if there is a home-country advantage, where it
is believed that the rate of medals per participant increases during the host year. The provided data is the
number of participants and the number of medals they won for various host countries the Olympics they
hosted and the previous Olympics they participated in. The data is for the Summer Olympics from 1952 to
2021. This data can be described with Y;; being the number of medals won by the host country during
Olympics i and Y;, being the number of medals won by the same country in the previous Olympics.
Similarly, N;; and N, are the number of participants by the host country during Olympics i and the same
country in the previous Olympics respectively. Using this data, this summary will detail the Bayesian
analysis to determine if there is statistical backing for the claim that hosting the Olympics leads to a greater
medal rate, predicting the number of medals France will win in the 2024 Olympics when they host, and if
there is evidence that specific countries have more of a home-country advantage over others.

Aggregate Analysis

Beginning with the claim that hosting the Olympics leads to a greater medal rate, the data across all years
is aggregated, i.e. Y; = Y18, Y;; = 1016, Y, = 218, V;o = 682, N; = X138, N;; = 7979, and Ny = X718, Nyg =
4715 being the total number of medals won by the host country, the total number of medals won by the
same country during the previous Olympics, the total number of participants by the host country, and the
total number of participants by the same country during the previous Olympics. To obtain posterior
distributions for A; and A,, i.e. the expected number of medals per participate by the home country during
the host year and during the previous Olympics respectively, the first step is to define what our likelihood
and prior distributions are. The data can be reasonably modelled with a Poisson distribution, i.e.
P(Y|2) ~ Poisson(N * 1), since the number of medals that can be won is a discrete positive real value,
multiple medals can be won by each individual so that A can be greater than 1, and each medal won is
independent of each other. A conjugate prior for a Poisson rate is the gamma distribution,
P(A) ~ Gamma(a, b), with parameters a and b both equaling 0.10 so that it is uninformative. As stated
previously, A could theoretically be any positive real number and thus the gamma distribution fulfills this
support. With this assumed likelihood and prior, the posterior distribution will follow a gamma distribution
with parameters A = a + Y and B = b + N. Thus, the posterior distribution is P(1|Y) ~ Gamma(A, B).

The main assumptions of this analysis are (1) that there is no difference between the participants in the
different countries so that the participants can be aggregated together, (2) the increased participation of the
host country is adding participants of equal caliber as those that would be normally competing during a
non-host year so that they each have equal probability of winning a medal, and (3) each medal won is
independent of each other. Assumption (1) is believed to be valid since all athletes receive similar nutrition
and training so that they all have equal probability of winning a medal, although this is debatable when
comparing the level of funding athletes receive from country to country. Assumption (2) is also believed to
be valid since all athletes need to qualify in order to participate in the Olympics and thus should all have
equal probability of winning a medal, but it has been reported in the 538 reference that the qualifications
are lowered in the host country so that more athletes can participate. Just because the qualifications are
lowered, does not necessarily change the equal probability that everyone has to winning a medal.
Assumption (3) is also believed to be valid, taking swimming as a working example, since winning the gold
medal in free style does not give you any advantage in your competition in the butterfly stroke.
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With the posterior defined to be P(1|Y) ~ Gamma(a +Y,b + N) and the assumptions of the model
discussed above, the posterior distributions and their respective summaries for both the host and non-host
medal rates for the aggregated data are shown in Figure 1. Comparing the two posterior distributions, one
can see that the majority of the non-host posterior distribution, i.e. red curve, is above the host posterior
distribution, i.e. blue curve. The spread of the host posterior is less than the spread of the non-host posterior
due to more data being avaible to construct the host distribution. Looking at the 2.5% quantile for the non-
host distribution and the 97.5% host distribution, there is overlap of the distributions.

Figure 1: Posterior distributions and summary of host and non-host medal rate for the aggregated data.
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Hypothesis Test

With the posterior distributions from the previous section, a hypothesis test can be conducted to determine
the probability that the host medal rate is greater than the non-host medal rate given the data, i.e. P(4; >
AolY1, ¥2), to see if there is a home-country advantage. The null hypothesis, Hy, is if P(1; > A¢|Y;,Y;) =
0.95 then we can conclude that the home-country advantage does exist. The alternative hypothesis, Hq, is
if P(A4; > A0]Y1,Y2) < 0.95 then we can conclude that the home-country advantage does not exist. To
obtain an estimate of P(1; > 44|Y;,Y2), Monte Carlo (MC) sampling is employed with 100,000 samples
from both posterior distributions to determine how much area in the A, distribution, i.e. blue distribution,
is greater than the A, distribution, i.e. red distribution. From these simulations it was found that 0.506% of
the A, distribution is greater than the A, distribution, so that one can say that there is a 0.506% chance that
the true value of A, is greater than the true value for 4,. Thus, one can be confident from these results that
the home-country advantage does not contribute to a significantly greater medal rate per participant.

To determine if the above conclusion is sensitive to the selected prior of Gamma(a=0.1,b=0.1),
P(A; > Ay|Y1,Y,) and summarizing statistics for P(A,]Y,) and P(A;]Y;) using different priors is shown in
Table 1. Note that the summarizing statistics for P(A,|Yy) and P(A,|Y;) are separated with “/”. As can be
seen from these results, they are found to not change significantly with the chosen prior. So that we can
conclude that the results are somewhat sensitive to the prior but not to a degree that would significantly
impact our conclusions since the amount of data we have overpowers the prior.

Table 1: Probability that the host medal rate is greater than the non-host medal rate, i.e. P(4; > 44|Y1,Y>),
and summary of non-host / host posterior distributions, i.e. P(4¢|Y,) / P(41|Y), for different priors

a b | P > A|Yy, Y2) Mean Quantile (2.5%) Quantile (97.5%)
0.10 | 0.10 0.00506 0.145/0.127 0.134/0.120 0.156/0.135

1 1 0.00491 0.145/0.127 0.134/0.120 0.156 /0.135

2 2 0.00475 0.145/0.127 0.134/0.120 0.156/0.135

5 5 0.00465 0.146/0.128 0.135/0.120 0.157/0.136
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Prediction

Knowing that France had N, = 398 participants and won Yz, = 33 medals in the 2021 summer Olympics,
the posterior predictive distribution (PPD) can be derived to estimate the number of medals France will win
in the 2024 Olympics when they host and quantify the associated uncertainty. In order to derive the PPD,
the number of participants Ng; must first be predicted. This is accomplished by utilizing linear regression
with the provided data to predict N, as a function of N,. This fit is shown in blue in the left graph of Figure
2. The 95% prediction intervals are also shown in green and are used to include the uncertainty of Ng; in
the PPD. With this information, it is determined that France should have about 561 + 114 participants in
2024. Also, in Figure 2 is the linear regression fit of the provided data to predict ¥; as a function of Y, and
shows that France should win about 50 medals in 2024.

With an estimate of Ng,, the next step is to define the posterior P(1|Y) and the likelihood f(Y*|A) to be
used in a MC sampling procedure to estimate the PPD f*(Y*|Y). The posterior is a gamma distribution,
P(AY) ~ Gamma(0.10 + Yz, 0.10 + Ngg), for the reasons explained in the aggregate study. In this
analysis, the French participants and medals won in the previous Olympics are being used instead of the
aggregate values calculated previously, i.e. N; and Y7, since (1) the previous French performance is assumed
to be a better indicator of future performance and (2) the aggregate analysis and the country specific analysis
conducted in the next section showed that the home-country advantage does not contribute to a significantly
greater medal rate per participant. The likelihood is given with a Poisson distribution,
P(Y*|A) ~ Poisson(Ng, * 1), for the same reasons as discussed during the aggregate analysis, where N,
follows a normal distribution, N, ~ Normal(561,52), from the linear regression analysis. With 100,000
MC samples, the PPD in red assuming Ny, to have uncertainty and the PPD in blue assuming N, to be
equal to 561 is shown in Figure 3. From these results we see that the PPD is not very sensitive to the Nz,
estimate. Including Ny, uncertainty, there is a 95% probability that France will win between 26-72 medals
in 2024 with a mean medal count of 46.64, which is close to the predicted 50 medals from linear regression.

Figure 2: Linear regression fit of number of participants (left) and the number of medals won (right)
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Figure 3: PPD and summary of ¥, when including and not including Ny, uncertainty shown in red and blue

0.05

—&— With N1_France Unc
=8— Without N1_France Unc

004
1

3 J With Ngy Without Ngy
2 < Uncertainty Uncertainty
5o Mean 46.64 46.67

“ Std 11.61 10.58

5 Quantile (2.5%) 26 28

° Quantile (97.5%) 72 69

0.00
1

T T T T T T T
0 20 40 60 80 100 120

Medals Won



Andy Rivas ST540 Applied Bayesian Analysis Midterm #1

Country-Specific Analysis

For the country specific analysis, the medal rate ratio r; = A;; /A, iS compared to determine if the home-
country advantage differs by country. Similarly, to the aggregate analysis, the posterior distributions of 1;;
and A;, are defined to be P(4;1|Y;1) ~ Gamma(a + Y;1, b + N;;) and P(A;|Y;o) ~ Gamma(a + Y;o, b +
N;p). To obtain these posterior distributions, the likelihood is a Poisson distribution, i.e.
P(Y;|A;) ~ Poisson(N; * A;), while the conjugate prior is the gamma distribution, P(4;) ~ Gamma(a, b),
with parameters a = b = 0.10 so that it is uninformative. The likelihood and prior were chosen for the
same reasons outlined previously in the aggregate analysis. With 100,000 MC samples, the posterior
distributions of the medal rate ratio for each country are shown in Figure 4 and are constructed by sampling
from both P(2;1]Y;1) and P(4;0|Y;o) to obtain a sample from the r; posterior. From the curves, a medal rate
ratio of 1 signifies there is not a home-country advantage, less than 1 signifies the athletes performed worse
in their home country, and greater than 1 signifies the athletes performed better in their home country.

To determine if the medal rate ratio is different between countries, a new transformation parameter for the
difference between the medal rate ratio of country i and country j, i.e. Ar;; = r; — 73, is defined. Utilizing
the 100,000 MC samples utilized to construct the posterior distributions, equal-tailed 95% credible intervals
are constructed for Ar;;. If the medal rate ratio is different between country i and country j, then this interval

should not contain 0. The countries that were found to differ from one another are those listed in Figure 4.

Figure 4: Posterior distributions of ; = 4;1/4,¢ and countries that show a difference in r; (right)
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Conclusions

From the analysis performed in this report, the question of if there is a home-country advantage was
investigated. From this study it was found that from the aggregated data, there is only a 0.506% chance that
the true value of A, is greater than the true value for 4,. When a similar analysis was done on a country-by-
country basis, there is an observed difference with countries performing significantly better than other
countries when they host the Olympics. However, the majority of the countries analyzed in this study did
not show significant differences from each other or from the year they hosted and the previous year. When
attempting to predict the number of medals with uncertainty France will win in 2024 when they host, a PPD
was constructed and used to show that there is a 95% probability that France will win between 26-72 medals
in 2024 with a mean medal count of 46.64. Two limitations of this analysis are (1) the number of predictors
and (2) not having a detailed breakdown of the events being held at each Olympics. For future work, more
predictors can be used, such as country population or country GDP and the specific sports at each Olympics
can be further explored since host countries tend to add sports that are popular in their country.



Andy Rivas ST540 Applied Bayesian Analysis Midterm #1

setwd('C

medals <- read.csv(
attach(medals)
set.seed(1)

NO
N1
Y0
Yl

sum(medals$PARTICIPATING. ATHLETES. DURING. PREVIOUS. OLYMPICS)
sum(medalsSPARTICIPATING. ATHLETES. DURING. HOST. YEAR)
sum(medalsIMEDALS. WON. DURING. PREVIOUS. OLYMPICS)
sum(medalsSMEDALS. WON. DURING. HOST. YEAR)

lambda0 = v0,/NO
Tambdal = vY1/N1

AD = Y0 + a

BO = NO + b

mean_lambda_0 = AQ/BO

variance lambda 0 = AQ0/BOAZ

median_lambda 0 = ggamma(C. 50, Y0+a,NO+b)
upper_bound_lambda_0 = ggamma(0.975, YO+a,NO+b)
Tower_bound_lambda_0 = ggamma(0.025, YO+a,N0+b)

Al = Y1 + a

Bl =NL + b

mean_Jlambda_1 = al1/B1

variance _lambda_1 = Al/B1AZ

median_lambda 1 = qgamma(0. 5C i
upper_bound_lambda_1 = ggamma(0.975, Yl+a,Nl+b)
Tower_bound_1ambda_1 qgamma(0.025, Yl+a,Nl+b)
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result_table_a = round(matrix(c(mean_lambda_0,variance_lambda_0,median_lambda_0, 1l:meerumI_l ambda_0,upper_bound_lambda_0,mean_lambda_1
,variance_lambda_1, med1an_1amhda_1 1uweerund_1a.mbda._1 upper_bound_lambda_1), nrow=2, nco , byrow=7),5)

rownames (result_table a) <- c("la a_ D

colnames (result_table a) <- c( ance edian 95% Lower Bound 95% Uppper Bound™)

result_table a<- as.table(result tah'ILa)

result_table a

lambda = seq(0,0.3,0.0001)

posterior_non_host = dgamna('l ambda, Y0+a,NO+b)

posterior_host = dgamma(lambda,Yl+a,N1+b)

plot (1ambda, posterior_non_host,col="red”, type="1",1 PDF 3 1.5, cex.axis = 1.5, ylim = c(0,100))
11nes(1a.|1bda poster1orJ|nst col="blue”, Twd=3, xlab= Z 1 i 5

legend("t eft”,legend=c("Non-Host Host"),col=c(

lambda_0_MC <- rgamma(S,Y0+a,NO+b)
lambda_1_MC <- rgamma(s,Yl+a,N1+b)

mean_lambda_0 = (Y0+a)/(NO+b)
upper_bound_lambda_0 = qgamma(0.975, YO+a,NO+b)
lower_bound_lambda_0 = qgamma (0 Y0+a,NO+b)

mean_lambda_1 = (¥1+a)/(N1+b)
upper_bound_Tlambda 1 = qgamma(0.975, Yl+a,Nl+h)
lower_bound_Tlambda 1 = qgamma(0.025, Yl+a,N1+b)

al =1
bl =1
lambda_0O_MC_1 <- rgamma(S,YO+al,NO+bl)

lambda_1_MC_1 <- rgamma(S,Yl+al,Nl+bl)

mean_lambda_0_1 = (¥0+al)/(NO+bl)
upper_bound_lambda_0_1 = qgamma(0.9%75, YO+al,NO+bl)
lower_bound_lambda_0_1 = ggamma(0.025, YO+al,NO+bl)

mean_lambda_1 1 = (yl+al)/(N1+b1)
upper_bound_Tlambda 1 1 - qgamma(0.975, Yl+al,Nl1+bl)
lower_bound_Tlambda 1 1 = qgamma(0.025, Yl+al,Nl+bl)

Tambda_0_Mc_2 <- rgamma(s,Yy0+a2,nN0+b2)
Tlambda_1_Mc_2 <- rgamma(s,yl+a2,n1+b2)

mean_lambda_0_2 = (v0+a2)/(NO+b2)
upper_bound_lambda_0_2 = ggamma (! ¥0+a2,N0+b2)
Tower_bound_lambda_0_2 = gqgamma (t Y0+a2 ,N0+b2)

mean_lambda_1_2 = (vi+al)/ (N1+b1)
upper_bound_lambda_1_2
Tower_bound_lambda_1_2

yl+az ,N1+b2)
yl+az ,N1+b2)

'Iambda_o_Mc 3 <- rgamma(s,¥y0+a3,n0+b3)
Tambda_1_mMc_3 <- rgamma(s,yl+a3,n1+b3)

mean_lambda_0_3 = (v0+a3)/(N0O+b3)
upper_bound_lambda_0_3 = qggamma (! ¥0+a3,N0+b3)
Tower_bound_lambda_0_3 = qgamma (t Y0+a3,N0+b3)

mean_lambda_1_3 = (v1+a3)/(n1+b3)
upper_bound_lambda_1_3 = qggamma (! yl+a3,N1+b3)
Tower_bound_lambda_1_3 = gqgamma(t yl+a3,N1+b3)

result_table_b = round(matrix(c(a,b,100*mean(lambda_1_mc>1ambda_0_mcC),al,bl,100*mean(lambda_1_mc_1>T1ambda_0_mMc_1),a2,b2,100*mean
(lambda_1_mc_2=Tlambda_0_mc_2),a3,b3 *mean(lambda_1_mc_: 3>]ambda_0_|4c 3)). nrow=4, ncol=3, byrow=r1),3)

rownames (result_table_b) <- c("p r_1","prior_2","Prio rior_4")

colnames(result_table_b) <- c("a

result_table_b <- as. tah]e(resu'lt tab'IeJ))

result_table_b

result_table_b 0 = round(matrix(c(a,b,mean_lambda_o,upper_bound_lambda_0,lower_bound_lambda_0,al,bl,mean_lambda_0_1,upper_bound_lambda_0_1
, lower_bound_Tlambda_0_1,a2,b2,mean_lambda_0_2,upper_bound_lambda_0_2,Tower_bound_lambda_0_2,a3,b3,mean_lambda_o0_3,upper_bound_lambda_o0_3

. lower_bound_Tlambda_0_3), nrow=4, ncol=5, byruw—T),J)

rownames (result_table_b_0) <- c("pPrior prior_2","Pr

colnames(result_table_b_0) <- c("a Mean”, "quanti

result_table_b 0 <- as. tab]e(resmt tab'IeJJ 0)

result_table_b_0

result_table_b 1 = round(matrix(c(a,b,mean_lambda_1,upper_bound_lambda_1,lower_bound_lambda 1,al,bl,mean_lambda_1_1,upper_bound_lambda_1_1
, lower_bound_lambda_1_1,a2,b2,mean_lambda_1_2,upper_bound_lambda_1_2,Tower_bound_lambda_1_2,a3,b3,mean_lambda_1_3,upper_bound_lambda_1_3
,lower_bound_lambda_1_3), nrow=4 5, byruw:T),3)

rownames (result_table_b_1) <- c("pPrior Prior Pr

colnames(result_table_b_1) <- c("a Mean”, guanr 1

result_table_b 1 <- as. tab]e(resmt tab'IeJJ_l)

result_table_b_ 1
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NO_France
YO_France

= medals$PARTICIPATING. ATHLETES. DURING. PREVIOUS. OLYMPICS
= medals$PARTICIPATING. ATHLETES. DURING. HOST. YEAR
fit <- Im(y-x)
summary (fit)
samples <- seq(min(x),max(x),1)
Host_Participants = fit$coefficients[1] + fit$coefficients[2]*samples
pred,‘interva'IJIOJrance = predict(fit,data.frame(x=N0_| France) Tevel= i ion")
pred_interval predi ct(ﬁt data. frame(x— (sa.mp'les)) ]eve'l—l- 5 ’
plot(x,y, pch—i.,x'lab— Partic 5 n st Country", ylab="Pa C ost Country
(Host_Participants)))
Tines(samples,Host_Participants,col
Tines(samples,pred_interval[,2],col
Tines(samples,pred_interval[, 3], col
eft”,legend=c("N1 = . B67*N 5 PT","a a 3,3,NA) ,,pch=c(NA, 9) ,Tty=c(1,1,NA) ,col=c("blue

» XxTim=c(min(x) ,max(>)),ylim=c(min(y),max

x_medals = medals$MEDALS.WON. DURING. PREVIOUS. OLYMPICS

y_medals = medals$MEDALS.WON. DURING. HOST. YEAR

fit_medals <- Tm(y_medals-x_medals)

summary (fit_medals)

samples_medals <- seq(min(x_medals),max(x_medals),1)

Host_medals = fit_medals$coefficients[1] + fit_medalsfcoefficients[2]*samples_medals
plot(x_medals,y medals, pch=19,xlab="medals of mMon-Host Country"”, ylab="Medals of Host
(min(y_medals) ,max(Host_medals)))

Tlines(samples_medals, HostJneda'Is co'\ Tue” , Twd=3)

Tlegend("topleft”,legend=c(" .319 Y0", "actual™), lwd=c(3,NA) ,pch=c(NA,19) , Tty=c(1,NA),col=c("blue”™, "black"}}

vy, xlim=c(min(x_medals),max(x_medals)),ylim=c

set.seed(1)
Y_star_w unc = rep(0,5)
index = 1
for (i in 1:5){
lambda_star = rgamma(l,Y0_France+a,NO_France+b)
N1_France_unc = rnorm(1,pred_interval_NO_France[,1], (pred_interval_NO_France[,3]-pred_interval_NO_France[,1])/2)
¥_star_w_unc[index] = rpois(1,N1_France_unc*lambda_star)
index = index + 1

hist(¥_star_w_unc)

¥_star_w_unc_mean = mean(Y_star_w_unc)
Y_star_w_unc_sd = sd(Y_star_w_unc)
Y_star_w_unc_2_5_quantile = quantile(y_star_w_unc,0
Y_star_w_unc_97_5_quantile = quantile(y_star_w_unc,

lambda_star = rgamma(s,Y0_France+a,NO_France+b)

nl_rrance = fitjcoefficients[1] + fitfcoefficients[2]*NO_France
y_star = rpois(s,Nl_rrance*]lambda_star)

hist(y_star)

Y_star_mean = mean(Yy_star)

Y_star_sd = sd(y_star)

Y_star_2_5_quantile = quantile(y_star,0

Y_star_97_5_quantile = quantile(Y_star,0.

plot(NuLL, xTim=c(0,120), ylim=c(0,0 ), ylab="PPD", xlab=
dens_w N1 _unc = density(Y_star_w_unc
dens_wo_N1_unc = density(Y_star)
Tines(dens_w_N1_unc§x, length(data)*dens_w_N1_unciy,type=
Tines(dens_wo_N1_uncix, length(data)*dens_wo_N1_unciy,typ
ght",legend=c("with N1_France unc’, 'without rep(0,2),lwd=rep(2,2),col=c('red’, blue’), cex=1, pt.cex = 1

result_table_PPD = matrix(c(Y_star_w_unc_mean,Y_star_w_unc_sd,¥_star_w_unc_2_5_quantile,¥_star_w_unc_97_5_quantile,Y_star_mean,Y_star_sd
,Y_star_2_5_quantile,Y_star_97_5_quantile), nrow=2, ncol

rownames (result_table_PPD) <- c("with N nce uncer i

colnames (result_table_ppPD) <- c(" . "quantil

result_table PPD <- as.table(result tab'le_PPD)

result_table PPD

NO_per_country
N1_per_country
YO_per_country
Y1_per_courntry
Courrtry_names = c("Finl

australia’ Greece’,

Tambda_0_per_country = YO_per_country/NO_per_country
Tambda_1_per_country = Y1_per_country/Nl_per_country
r_per_country = lambda_1_per_country/lambda_0_per_country
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r_mean_per_country = re Tength(Country_names))
r_std_per_country = )
r_2_5_quantile_per_. coum:r‘y rep(0,1ength(Country_names))
r_97_5_quantile_per_country = rep(0, length(Country_names))

r_Mc_Tlist = Tist()

ength(Country_names)){
'Iambda l) _MC_per_country rgamma(s,YO_per_country[i]+a,N0_per_country[il+b)
Tambda_1_mc_per_country rgamma(s,Yl_per_country[i]+a,N1_per_country[i]+b)
r_MC_per_country = lambda_1_MC_per_country/lambda_0_MC_per_country
r_MC_Tist[i] = Tlist(r_MC_per_country)
r_mean_per_country[i] = mean(r_mc_per_country)
r_std_per_country[i] sd{(r_MC_per_country)
r_2_5_quantile_per_country[i] = quantile(r_MC_per_country
r_97_5 quantile per_country[i] = quantile(r_MC_per_countr
dens = density(r_MC_per_country)
Tines(dens$x, length(data)“dens$y,type="1",col=colors[i], Twd

3
Tegend( ht",legend=Country_names[1:15], pch = rep , Iwd=rep(2,15) ,col=colors, cex= pt.cex =

result_table_r = matri _mean_per_country,r_std_per_country,r_2_5_quantile_per_country,r_97_5_quantile_per_country), nrow=1ength
(Country_names), ncol=4, byrow=r)

rcwnameqlrequ'lt _table r) <- Country_names

colnames (result_table_r) c(”

result_table r as.table(result tab'le r

result_table_r

Country_name_i , (length{Country_names)*1ength(Country_names)-length(Country_names)})
Country_name_: p (0. (Tength(country_names)*1ength(Country_names) - 1ength(country_names))
r_diff_mean_per_country = rep(0, (Tength(country_names)*1ength(Country_name:
r_diff_std _per_country = rep(0, (length(Country names)*1ength{Country_names
r_diff_2 5 quantile per_ country = rep(0, (length(Country names)*Tlength(Country i na.mes) -length(Country_names))/
r_diff_97_5_quantile_per_country = rep(0, (1ength({Country_names)*1length(Country_names)-T1ength(Country_nam
r_diff. dec1s1|:|n_per country = rep(0, (length(Country_names)*1ength(Country_names)-1length{Country_names
index
number of true_differences = 0
fe :Tength(country_names)){

:length(Country_names)){

I

Country_name_i[index] = Country_names[i]
Country_name_j[index] = Country_names[j]
r_diff_mean_per_country[index] = mean(r_Mc_list[[i]]-r_mc_Tist[[j1])
r_diff_std_per_country[index] = sd(r_mMmc_Tlist[[i]]-r_mc_list[[j]1])
r_diff_2_5_quantile_per_country[index] quantile(r_mc_Tist[[i1]-r_mc_Tist[[j1]1,0
r_diff_97_5_quantile_per_country[index] = quantile(r_mc_list[[i1]-r_mc_Tist[[j1]1,
r_diff_decision _per_country[index] = ifelse(quantile(r MC_Tist[[i]1]-r_mc_Tist[[j1]1, *quantile(r_Mc_Tist[[i]1]-r_mc_Tist[[j1],0
(quantile(r_Mc_Tist[[i]]-r_mc_Tist[[j1]1, quantﬂe(r mc_Tist[[i]]-r_Mc_Tlist[[jI1],0 > 0) {
number_of_true_differences = number_of_true_differences + 1

].

index = index + 1
}

1

result_table_r_diff = matrix(c(Country_name_i,Country_name_j,r_diff_mean_per_country,r_diff_std_per_country,r_diff_2_5_quantile_per_country
,r_diff_97_5_quantile_per_country,r_ d1ff decision_per cnunl:ry). nrow=1engt

co]na.nes(resu'lt table diff) <- c("co

result_table r_diff <- as.table(result_1 tab'le r d1ff)

result_table r_diff

number_of_true_differences

(medals)




