Introduction

Every four years the world's greatest athletes gather together at a host country to compete in a variety of sports to decide who are the three best performers to be awarded a medal for their representing country. A common question that has been asked about the Olympics is if there is a home-country advantage, where it is believed that the rate of medals per participant increases during the host year. The provided data is the number of participants and the number of medals they won for various host countries the Olympics they hosted and the previous Olympics they participated in. The data is for the Summer Olympics from 1952 to 2021. This data can be described with $Y_{i 1}$ being the number of medals won by the host country during Olympics i and $Y_{i 0}$ being the number of medals won by the same country in the previous Olympics. Similarly, $N_{i 1}$ and $N_{i 0}$ are the number of participants by the host country during Olympics i and the same country in the previous Olympics respectively. Using this data, this summary will detail the Bayesian analysis to determine if there is statistical backing for the claim that hosting the Olympics leads to a greater medal rate, predicting the number of medals France will win in the 2024 Olympics when they host, and if there is evidence that specific countries have more of a home-country advantage over others.

Aggregate Analysis

Beginning with the claim that hosting the Olympics leads to a greater medal rate, the data across all years is aggregated, i.e. $Y_{1}=\sum_{i=1}^{18} Y_{i 1}=1016, Y_{0}=\sum_{i=1}^{18} Y_{i 0}=682, N_{1}=\sum_{i=1}^{18} N_{i 1}=7979$, and $N_{0}=\sum_{i=1}^{18} N_{i 0}=$ 4715 being the total number of medals won by the host country, the total number of medals won by the same country during the previous Olympics, the total number of participants by the host country, and the total number of participants by the same country during the previous Olympics. To obtain posterior distributions for λ_{1} and λ_{0}, i.e. the expected number of medals per participate by the home country during the host year and during the previous Olympics respectively, the first step is to define what our likelihood and prior distributions are. The data can be reasonably modelled with a Poisson distribution, i.e. $P(Y \mid \lambda) \sim \operatorname{Poisson}(N * \lambda)$, since the number of medals that can be won is a discrete positive real value, multiple medals can be won by each individual so that λ can be greater than 1 , and each medal won is independent of each other. A conjugate prior for a Poisson rate is the gamma distribution, $P(\lambda) \sim \operatorname{Gamma}(a, b)$, with parameters a and b both equaling 0.10 so that it is uninformative. As stated previously, λ could theoretically be any positive real number and thus the gamma distribution fulfills this support. With this assumed likelihood and prior, the posterior distribution will follow a gamma distribution with parameters $A=a+Y$ and $B=b+N$. Thus, the posterior distribution is $P(\lambda \mid Y) \sim \operatorname{Gamma}(A, B)$.

The main assumptions of this analysis are (1) that there is no difference between the participants in the different countries so that the participants can be aggregated together, (2) the increased participation of the host country is adding participants of equal caliber as those that would be normally competing during a non-host year so that they each have equal probability of winning a medal, and (3) each medal won is independent of each other. Assumption (1) is believed to be valid since all athletes receive similar nutrition and training so that they all have equal probability of winning a medal, although this is debatable when comparing the level of funding athletes receive from country to country. Assumption (2) is also believed to be valid since all athletes need to qualify in order to participate in the Olympics and thus should all have equal probability of winning a medal, but it has been reported in the 538 reference that the qualifications are lowered in the host country so that more athletes can participate. Just because the qualifications are lowered, does not necessarily change the equal probability that everyone has to winning a medal. Assumption (3) is also believed to be valid, taking swimming as a working example, since winning the gold medal in free style does not give you any advantage in your competition in the butterfly stroke.

With the posterior defined to be $P(\lambda \mid Y) \sim \operatorname{Gamma}(a+Y, b+N)$ and the assumptions of the model discussed above, the posterior distributions and their respective summaries for both the host and non-host medal rates for the aggregated data are shown in Figure 1. Comparing the two posterior distributions, one can see that the majority of the non-host posterior distribution, i.e. red curve, is above the host posterior distribution, i.e. blue curve. The spread of the host posterior is less than the spread of the non-host posterior due to more data being avaible to construct the host distribution. Looking at the 2.5% quantile for the nonhost distribution and the 97.5% host distribution, there is overlap of the distributions.

Figure 1: Posterior distributions and summary of host and non-host medal rate for the aggregated data.

Hypothesis Test

With the posterior distributions from the previous section, a hypothesis test can be conducted to determine the probability that the host medal rate is greater than the non-host medal rate given the data, i.e. $P\left(\lambda_{1}>\right.$ $\left.\lambda_{0} \mid Y_{1}, Y_{2}\right)$, to see if there is a home-country advantage. The null hypothesis, H_{0}, is if $P\left(\lambda_{1}>\lambda_{0} \mid Y_{1}, Y_{2}\right) \geq$ 0.95 then we can conclude that the home-country advantage does exist. The alternative hypothesis, H_{1}, is if $P\left(\lambda_{1}>\lambda_{0} \mid Y_{1}, Y_{2}\right)<0.95$ then we can conclude that the home-country advantage does not exist. To obtain an estimate of $P\left(\lambda_{1}>\lambda_{0} \mid Y_{1}, Y_{2}\right)$, Monte Carlo (MC) sampling is employed with 100,000 samples from both posterior distributions to determine how much area in the λ_{1} distribution, i.e. blue distribution, is greater than the λ_{0} distribution, i.e. red distribution. From these simulations it was found that 0.506% of the λ_{1} distribution is greater than the λ_{0} distribution, so that one can say that there is a 0.506% chance that the true value of λ_{1} is greater than the true value for λ_{0}. Thus, one can be confident from these results that the home-country advantage does not contribute to a significantly greater medal rate per participant.

To determine if the above conclusion is sensitive to the selected prior of $\operatorname{Gamma}(\mathrm{a}=0.1, \mathrm{~b}=0.1)$, $\mathrm{P}\left(\lambda_{1}>\lambda_{0} \mid \mathrm{Y}_{1}, \mathrm{Y}_{2}\right)$ and summarizing statistics for $\mathrm{P}\left(\lambda_{0} \mid \mathrm{Y}_{0}\right)$ and $\mathrm{P}\left(\lambda_{1} \mid \mathrm{Y}_{1}\right)$ using different priors is shown in Table 1. Note that the summarizing statistics for $\mathrm{P}\left(\lambda_{0} \mid \mathrm{Y}_{0}\right)$ and $\mathrm{P}\left(\lambda_{1} \mid \mathrm{Y}_{1}\right)$ are separated with "/". As can be seen from these results, they are found to not change significantly with the chosen prior. So that we can conclude that the results are somewhat sensitive to the prior but not to a degree that would significantly impact our conclusions since the amount of data we have overpowers the prior.

Table 1: Probability that the host medal rate is greater than the non-host medal rate, i.e. $P\left(\lambda_{1}>\lambda_{0} \mid Y_{1}, Y_{2}\right)$, and summary of non-host / host posterior distributions, i.e. $P\left(\lambda_{0} \mid Y_{0}\right) / P\left(\lambda_{1} \mid Y_{1}\right)$, for different priors

a	b	$\mathrm{P}\left(\lambda_{1}>\lambda_{0} \mid \mathrm{Y}_{1}, \mathrm{Y}_{2}\right)$	Mean	Quantile (2.5\%)	Quantile (97.5%)
0.10	0.10	0.00506	$0.145 / 0.127$	$0.134 / 0.120$	$0.156 / 0.135$
1	1	0.00491	$0.145 / 0.127$	$0.134 / 0.120$	$0.156 / 0.135$
2	2	0.00475	$0.145 / 0.127$	$0.134 / 0.120$	$0.156 / 0.135$
5	5	0.00465	$0.146 / 0.128$	$0.135 / 0.120$	$0.157 / 0.136$

Prediction

Knowing that France had $N_{F 0}=398$ participants and won $Y_{F 0}=33$ medals in the 2021 summer Olympics, the posterior predictive distribution (PPD) can be derived to estimate the number of medals France will win in the 2024 Olympics when they host and quantify the associated uncertainty. In order to derive the PPD, the number of participants $\mathrm{N}_{\mathrm{F} 1}$ must first be predicted. This is accomplished by utilizing linear regression with the provided data to predict N_{1} as a function of N_{0}. This fit is shown in blue in the left graph of Figure 2. The 95% prediction intervals are also shown in green and are used to include the uncertainty of $N_{F 1}$ in the PPD. With this information, it is determined that France should have about 561 ± 114 participants in 2024. Also, in Figure 2 is the linear regression fit of the provided data to predict Y_{1} as a function of Y_{0} and shows that France should win about 50 medals in 2024.

With an estimate of $N_{F 1}$, the next step is to define the posterior $P(\lambda \mid Y)$ and the likelihood $f\left(Y^{*} \mid \lambda\right)$ to be used in a MC sampling procedure to estimate the PPD $f^{*}\left(Y^{*} \mid Y\right)$. The posterior is a gamma distribution, $P(\lambda \mid Y) \sim \operatorname{Gamma}\left(0.10+Y_{F 0}, 0.10+N_{F 0}\right)$, for the reasons explained in the aggregate study. In this analysis, the French participants and medals won in the previous Olympics are being used instead of the aggregate values calculated previously, i.e. N_{1} and Y_{1}, since (1) the previous French performance is assumed to be a better indicator of future performance and (2) the aggregate analysis and the country specific analysis conducted in the next section showed that the home-country advantage does not contribute to a significantly greater medal rate per participant. The likelihood is given with a Poisson distribution, $P\left(Y^{*} \mid \lambda\right) \sim \operatorname{Poisson}\left(N_{F 1} * \lambda\right)$, for the same reasons as discussed during the aggregate analysis, where $N_{F 1}$ follows a normal distribution, $N_{F 1} \sim \operatorname{Normal}(561,52)$, from the linear regression analysis. With 100,000 MC samples, the PPD in red assuming $N_{F 1}$ to have uncertainty and the PPD in blue assuming $N_{F 1}$ to be equal to 561 is shown in Figure 3. From these results we see that the PPD is not very sensitive to the $N_{F 1}$ estimate. Including $N_{F 1}$ uncertainty, there is a 95% probability that France will win between $26-72$ medals in 2024 with a mean medal count of 46.64 , which is close to the predicted 50 medals from linear regression.

Figure 2: Linear regression fit of number of participants (left) and the number of medals won (right)

Figure 3: PPD and summary of $\boldsymbol{Y}_{F 1}$ when including and not including $\boldsymbol{N}_{F 1}$ uncertainty shown in red and blue

Country-Specific Analysis

For the country specific analysis, the medal rate ratio $r_{\mathrm{i}}=\lambda_{\mathrm{i} 1} / \lambda_{\mathrm{i} 0}$ is compared to determine if the homecountry advantage differs by country. Similarly, to the aggregate analysis, the posterior distributions of $\lambda_{i 1}$ and $\lambda_{i 0}$ are defined to be $P\left(\lambda_{i 1} \mid Y_{i 1}\right) \sim \operatorname{Gamma}\left(a+Y_{i 1}, b+N_{i 1}\right)$ and $P\left(\lambda_{i 0} \mid Y_{i 0}\right) \sim \operatorname{Gamma}\left(a+Y_{i 0}, b+\right.$ $N_{i 0}$). To obtain these posterior distributions, the likelihood is a Poisson distribution, i.e. $P\left(Y_{i} \mid \lambda_{i}\right) \sim \operatorname{Poisson}\left(N_{i} * \lambda_{i}\right)$, while the conjugate prior is the gamma distribution, $P\left(\lambda_{i}\right) \sim \operatorname{Gamma}(a, b)$, with parameters $a=b=0.10$ so that it is uninformative. The likelihood and prior were chosen for the same reasons outlined previously in the aggregate analysis. With $100,000 \mathrm{MC}$ samples, the posterior distributions of the medal rate ratio for each country are shown in Figure 4 and are constructed by sampling from both $P\left(\lambda_{i 1} \mid Y_{i 1}\right)$ and $P\left(\lambda_{i 0} \mid Y_{i 0}\right)$ to obtain a sample from the r_{i} posterior. From the curves, a medal rate ratio of 1 signifies there is not a home-country advantage, less than 1 signifies the athletes performed worse in their home country, and greater than 1 signifies the athletes performed better in their home country.

To determine if the medal rate ratio is different between countries, a new transformation parameter for the difference between the medal rate ratio of country i and country j, i.e. $\Delta r_{i j}=r_{i}-r_{j}$, is defined. Utilizing the $100,000 \mathrm{MC}$ samples utilized to construct the posterior distributions, equal-tailed 95% credible intervals are constructed for $\Delta r_{i j}$. If the medal rate ratio is different between country i and country j, then this interval should not contain 0 . The countries that were found to differ from one another are those listed in Figure 4.

Figure 4: Posterior distributions of $r_{i}=\lambda_{i 1} / \lambda_{i 0}$ and countries that show a difference in r_{i} (right)

Conclusions

From the analysis performed in this report, the question of if there is a home-country advantage was investigated. From this study it was found that from the aggregated data, there is only a 0.506% chance that the true value of λ_{1} is greater than the true value for λ_{0}. When a similar analysis was done on a country-bycountry basis, there is an observed difference with countries performing significantly better than other countries when they host the Olympics. However, the majority of the countries analyzed in this study did not show significant differences from each other or from the year they hosted and the previous year. When attempting to predict the number of medals with uncertainty France will win in 2024 when they host, a PPD was constructed and used to show that there is a 95% probability that France will win between $26-72$ medals in 2024 with a mean medal count of 46.64 . Two limitations of this analysis are (1) the number of predictors and (2) not having a detailed breakdown of the events being held at each Olympics. For future work, more predictors can be used, such as country population or country GDP and the specific sports at each Olympics can be further explored since host countries tend to add sports that are popular in their country.


```
##
    Andy Rivas
#
```



```
setwd('C:/Users/aknri/OneDrive/Desktop/Applied Bayesian Stats/Midterm1/')
#Load the data into a Dataframe
medals <- read.csv("Medals.csv")
attach(medals)
set. seed(1)
#######
## a #
#######
#}\mathrm{ Read in the data for aggregate analysis
NO = sum(medals$PARTICIPATING. ATHLETES. DURING. PREVIOUS.OLYMPICS)
N1 = sum(medals$PARTICIPATING. ATHLETES. DURING. HOST. YEAR)
Y0 = sum(medals$MEDALS.WON. DURING. PREVIOUS.OLYMPICS)
Y1 = sum(medals$MEDALS. WON. DURING. HOST. YEAR)
1ambda0 = Y0/N0
1ambda1 = Y1/N1
    ## define uninformative priors
    a = 0.1
    b}=0.
    # Determine mean, variance, median, and 95% lower/upper bounds for non-host year
    AO = YO + a
    BO = NO + b
    mean_lambda_0 = A0/B0
    variance_1ambda_0 = A0/B0^2
    median_lambda_0 = qgamma(0. 50, Y0+a,NO+b)
    upper_bound_1ambda_0 = qgamma(0.975, Y0+a,NO+b)
    lower_bound_lambda_0 = qgamma(0.025, Y0+a,NO+b)
    # Determine mean, variance, median, and 95% lower/upper bounds for host year
    A1 = Y1 + a
    B1 = N1 + b
    mean_lambda_1 = A1/B1
    variance_lambda_1 = A1/B1^2
    median_1ambda_1 = qgamma(0.50, Y1+a,N1+b)
    upper_bound_1ambda_1 = qgamma(0.975, Y1+a,N1+b)
    lower_bound_1ambda_1 = qgamma(0.025, Y1+a,N1+b)
```

```
52 Show results in a table
3 result_table_a = round(matrix(c(mean_lambda_0,variance_1ambda_0,median_lambda_0,1ower_bound_1ambda_0,upper_bound_1ambda_0,mean_1ambda_1
    ,variance_lambda_1,median_lambda_1,1ower_bound_lambda_1,upper_bound_lambda_1), nrow=2, ncol=5, byrow=T),5)
4
5 colnames(result_trable_a) <- c("lambda_0","lambda_1")
6 result_table_a<- as.table(result_table_a)
result_table_a
58
60
1ambda = seq(0,0.3,0.0001)
1 posterior_non_host = dgamma(lambda, Y0+a,NO+b)
52 posterior_host = dgamma(lambda, Y1 +a,N1+b)
3 plot(lambda, posterior_non_host,col="red", type="1", lwd=3, xlab="lambda", ylab="ppF", cex. lab = 1.5, cex.axis = 1.5, ylim = c(0,100))
4 lines(lambda,posterior_host,col="blue", lwd=3, xlab="lambda", ylab="pDF", cex.lab = 1.5, cex.axis = 1.5)
65
67 V N##
    #b
    #####%
    S = 100000
    * Determine if there is a home country advantage
    lambda_0_MC <- rgamma(S,Y0+a,NO+b)
    lambda_1_MC <- rgamma(S,Y1+a,N1+b)
mean_lambda_0 = (Y0+a)/(NO+b)
upper_bound_1ambda_0 = qgamma(0.975, Y0+a,NO+b)
lower_bound_1ambda_0 = qgamma(0.025, Y0+a,NO+b)
mean_1ambda_1 = (Y1+a)/(N1+b)
upper_bound_lambda_1 = qgamma(0.975, Y1+a,N1+b)
lower_bound_lambda_1 = qgamma(0.025, Y1+a,N1+b)
# Determine if there is a home country advantage using different priors
# Prior 
a1 = 1
b1 =
1ambda_0_MC_1 <- rgamma(S,Y0+a1,N0+b1)
lambda_1_MC_1 <- rgamma(S,Y1+a1,N1+b1)
91
mean_lambda_0_1 = (Y0+a1)/(NO+b1)
upper_bound_lambda_0_1 = qgamma(0.975, Y0+a1,N0+b1)
lower_bound_lambda_0_1 = qgamma(0.025, Y0+a1,NO+b1)
mean_lambda_1_1 = (Y1+a1)/(N1+b1)
upper_bound_1ambda_1_1 = qgamma(0.975, Y1+a1,N1+b1)
lower_bound_lambda_1_1 = qgamma(0.025, Y1+a1,N1+b1)
```

```
# Prior 3
a2=2
b2 = 2
lambda_0_MC_2 <- rgamma(S,Y0+a2,NO+b2)
lambda_1_MC_2 <- rgamma(S,Y1+a2,N1+b2)
```

mean_1ambda_0_2 $=(\mathrm{Y} 0+\mathrm{a} 2) /(\mathrm{NO} 0+\mathrm{b} 2)$
upper_bound_1ambda_0_2 $=\operatorname{qgamma}(0.975, \mathrm{Y} 0+\mathrm{a} 2, \mathrm{NO} 0+\mathrm{b} 2)$
lower_bound_1ambda_0_2 = qgamma(0.025, Y0+a2,N0+b2)
lower_bound_1ambda_0_2 $=$ qgamma $(0$.
mean_1ambda_1_2 $=(\mathrm{Y} 1+\mathrm{a} 1) /(\mathrm{N} 1+\mathrm{b} 1)$
upper_bound_1ambda_1_2 = qgamma(0.975, Y1 $+\mathrm{a} 2, \mathrm{~N} 1+\mathrm{b} 2$)
lower_bound_1ambda_1_2 = qgamma($0.025, \mathrm{Y} 1+\mathrm{a} 2, \mathrm{~N} 1+\mathrm{b} 2$)
\# prior 4
$\mathrm{a} 3=5$
$\mathrm{~b} 3=5$
lambda_0_MC_3 <- rgamma(S, Y0+a3,NO+b3)
1ambda_1_MC_3 <- rgamma(s, Y1 +a3, N1+b3)
mean_1ambda_0_3 $=(\mathrm{Y} 0+\mathrm{a} 3) /(\mathrm{NO} 0+\mathrm{b} 3)$
upper_bound_1ambda_0_3 = qgamma(0.975, Y0+a3, NO+b3)
upper_bound_1ambda_0_3 = qgamma(0.975, Y0+a3,N0+b3)
lower_bound_lambda_0_3 = qgamma(0.025, YO+a3,NO+b3)
mean_1ambda_1_3 $=(\mathrm{Y} 1+\mathrm{a} 3) /(\mathrm{N} 1+\mathrm{b} 3)$
upper_bound_1ambda_1_3 = qgamma(0.975, Y1 $1+\mathrm{a} 3, \mathrm{~N} 1+\mathrm{b} 3$)
lower_bound_1ambda_1_3 = qgamma (0.025, Y1 $+\mathrm{a3} 3, \mathrm{~N} 1+\mathrm{b} 3$)
127
result_table_b $=$ round (matrix (c (a,b,100*mean(lambda_1_MC>lambda_0_MC), a1, b1, 100*mean(lambda_1_MC_1>1ambda_0_MC_1),a2,b2,100*mean
(lambda_1_MC_2>1ambda_0_MC_2),a3,b3,100*mean(lambda_1_MC_3>1ambda_0_MC_3)), nrow=4, ncol=3, byrow=T),3)
rownames (result_table_b) <- c("Prior_1","Prior_2","Prior_3","Prior_4")
colnames (result_table_b) <- c("a","b","Prob")
result_table_b <- as.table(result_table_b)
result_table_b
133
134
134
135
esult_table_b_0 = round (matrix (c (a,b,mean_Tambda_0,upper_bound_1ambda_0,1ower_bound_1ambda_0,a1,b1,mean_1ambda_0_1,upper_bound_1ambda_0_1
, lower_bound_lambda_0_1, a2, b2, mean_1ambda_0_2, upper_bound_lambda_0_2,1ower_bound_1ambda_0_2,a3,b3,mean_1ambda_0_3,upper_bound_1ambda_0_3
, lower_bound_1ambda_0_3), nrow=4, ncol=5, byrow=T),3)
rownames (result_table_b_0) <- c("Prior_1","Prior_2","Prior_3","Prior_4")
colnames (result_table_b_0) <- c("a","b","Mean","Quantile (2.5\%)","Quantile (97.5\%)")
result_table_b_0 <- as.table(result_table_b_0)
result_table_b_0
139
140
141 result_table_b_1 = round (matrix (c (a,b,mean_1ambda_1, upper_bound_1ambda_1, 1ower_bound_1ambda_1,a1,b1,mean_1ambda_1_1,upper_bound_1ambda_1_1
, lower_bound_1ambda_1_1, a2, b2, mean_1ambda_1_2, upper_bound_1ambda_1_2,1ower_bound_1ambda_1_2, a3,b3,mean_1ambda_1_3,upper_bound_1ambda_1_3
, lower_bound_lambda_1_3), nrow=4, ncol=5, byrow=T), 3)
rownames (result_table_b_1) <- c("Prior_1","Prior_2","Prior_3","Prior_4")
colnames (result_table_b_1) <-c("a","b","Mean","Quantile (2.5\%)","Quantile (97.5\%)")
result_table_b_1 <- as.table(result_table_b_1)
result_table_b_1

```
147% ###.#
149 V NHNAF
150 #Load known data
151 NO_France = 398
152 Yo_France = 33
53 a = 0.10
155
156 * First predict N1_France, i. e. the number of participants in 2024 from France, using LR
157 % Plot the PTt With data points of other countries and 95%
```



```
159 y = medals$PAR
lol
162 samples <- seq(min(x),max(x),1)
163 Host_Participants = fit$coefficients[1] + fit$coefficients[2]*samples
164 pred_interval_NO_France= predict(fit,data.frame(x=NO_France),level=0.95,interval='prediction')
165 pred_interval= predict(fit,data.frame(x=c(samples)), level=0.95,interval='prediction')
166 plot (x,y, pch=19,xlab="Participants of Non-Host Country", ylab="Participants of Host Country", xlim=c(min(x),max(x)),ylim=c(min(y),max
(Host_Participants)))
168 lines(samples,pred_interval[,2],col='green', lwd=3)
169 lines(samples,pred_interval[,3],col='green',1wd=3)
170 legend("topleft",legend=c("N1 = 216.068 + 0.867*NO","95% PI","actual"),1wd=c(3,3,NA),pch=c(NA,NA,19),1ty=c(1,1,NA),col=c("blue","green"
    ,"black"))
172 # predict Y__France, i.e. the number of medals won in 2024 from France, using LR to compare with PPD
x3 x_medals = medals$MEDALS. WON. DURING. PREVIOUS.OLYMPICS
174 y_medals = medals$MEDALS.WON.DURING. HOST. YEAR
75 fit_medals <- lm(y_medals~X_medals)
176
177 samples_medals <- seq(min(x_medals),max(x_medals),1)
78 Host_medals = fit_medals$coefficients[1] + fit_medals$coefficients[2]*samples_medals
plot (x_medals,y_medals, pch=19,xlab="Medals of Non-Host Country", ylab="Medals of Host Country", xlim=c(min(x_medals),max(x_medals)),ylim=c
lines(samples madls , Host malals,
80 lines (samples_medals, Host medals, col=' blue', lwd=3)
181 legend("topleft",legend=c("Y1 = 4.319 + 1.376*Y0","actual"), lwd=c(3,NA),pch=c(NA,19), lty=c(1,NA),col=c("blue","black"))
182 # Including N1_France uncertainty in the PPD, MC sampling is performed and summary statistics are computed
84 s = 100000
85 set.seed(1)
86 Y_star_w_u
88 - for (i in 1:5){
89 1ambda_star = rgamma(1,Y0_France+a,NO_France+b)
    N1_France_unc = rnorm(1,pred_interval_NO_France[,1],(pred_interval_NO_France[,3]-pred_interval_NO_France[,1])/2)
        Y_star_w_unc[index] = rpois(1,N1_France_unc*lambda_star)
        index = index + 1
93 * }
hist(Y_star_w_unc)
Y_star_w_unc_mean = mean(Y_star_w_unc)
Y_star_w_unc_sd = sd(Y_star_w_unc)
Y_star_W_unc_2_5_quantile = quantile(Y_star_w_unc,0.025)
198 Y_star_w_unc_97_5_quantile = quantile(Y_star_w_unc,0.975)
```

```
    lambda_star = rgamma(s,Y0_France+a,NO_France+b)
    N1_France = fit$coefficients[1] + fit$coefficients[2]*NO_France
    M N1_France = fit$coefficients[1] + fit$c
    04 hist(Y_star)
    Y_star_mean = mean(Y_star)
    Y_star_sd = sd(Y_star)
    Y_star_2_5_quantile = quantile(Y_star,0.025)
    Y_star_97_5_quantile = quantile(Y_star,0.975)
209
210 #flot with and without N1_France uncertainty in PPD
plot(NULL, xlim=c(0,120), ylim=c(0,0.05), ylab="PPD", xlab="Medals won")
dens_w_N1_unc = density(Y_star_w_unc)
13 dens_wo_N1_unc = density(Y_star)
lines(dens_w_N1_unc$x,length(data)*dens_w_N1_unc$y,type="1",col='red', lwd=3)
lol
legend("topright",legend=c('with N1_France Unc','without N1_France unc'), pch = rep(0,2),1wd=rep(2,2),col=c('red','blue'), cex=1, pt.cex = 
)
218 # Show results in a table
result_table_PPD = matrix(c(Y_star_w_unc_mean,Y_star_w_unc_sd,Y_star_w_unc_2_5_quantile,Y_star_w_unc_97_5_quantile,Y_star_mean,Y_star_sd
    ,Y_star_2_5_quantile,r_star_97_5_quantile), nrow=2, ncol=4, byrow=T)
    ,Y_star_2_(requantile,Y_star_97_5_quant ile), nrow=2, ncol=4, byrow=1) <- c("with N1_France uncertainty","without N1_France uncertainty")
    colnames(result_table_PPD) <- c("Mean","Std","Quantile (2.5%)","Quantile (97.5%)")
    result_table_PPD <- as.table(result_table_PPD)
    result_table_PPD
    ####.*
    # # |
    * Load in Data
    NO_per_country = c(129, 135, 94, 275, 208, 410, 175, 229, 941, 498, 140, 384, 304, 236, 557)
    N1_per_country = c(258, 280, 275, 423, 385, 489, 401, 422, 1169, 911, 426, 599, 530, 462, 949)
231 Yo_per_country = c(24, 25, 1, 26, 5, 125, 19, 4, 202, 52, 13, 63, 47, 17, 59)
232 Y1_per_country =c(22, 36, 9, 40, 11, 195, 33, 22, 275, 93, 16, 100, 65, 19, 80)
233 Country_names = c('Finland','Italy','Mexico',' 'West Germany', 'Canada',' 'Soviet Union', 'South Korea', 'Spain', 'United States',
    'Australia', 'Greece', 'China', 'Great Britain', 'Brazil', 'Japan')
2 3 5 ~ l a m b d a \_ 0 \ p e r \_ c o u n t r y ~ = ~ Y 0 . p e r \_ c o u n t r y / N O \_ p e r \_ c o u n t r y ~
336 1ambda_1_per_country = Y1_per_country/N1_per_country
ram r_per_country = lambda_1_per_country/lambda_0_per_country
238
239 % Determine if there is a home country advantage
240 S = 100000
241 set.seed(1)
242 a = 0.10
```

```
246 r_mean_per_country = rep(0, length(Country_names))
247 r_std_per_country = rep(0,1ength(Country_names))
2 4 8 ~ r ` 2 < 5 - q u a n t i l e - p e r \_ c o u n t r y ~ = ~ r e p ( 0 , 1 e n g t h ( c o u n t r y \& n a m e s ) ) ~
249 r_97_5_quantile_per_country = rep(0,length(Country_names))
251 r_MC_list = list()
253 % plot posteriors of r for all countries and save summary statistics in vectors
254 plot(NULL, xlim=c(0,3), ylim=c(0,4), ylab="Density", xlab="r value")
```



```
colors = c('b
,'lightblue')
    lambda_0_MC_per_country <- rgamma(S,y0_per_country[i]+a,N0_per_country[i]+b)
    lambda_1_MC_per_country <- rgamma(S,Y1_per_country[i]+a,N1_per_country[i]+b)
    r_MC_per_country = lambda_1_MC_per_country/lambda_0_MC_per_country
    r_MC_list[i] = list(r_MC_per_country)
    r_mean_per_country[i] = mean(r_MC_per_country)
    r_std_per_country[i] = sd(r_MC_per_country)
    r_2_5_quantile_per_country[i] = quantile(r_MC_per_country,0.025)
    r_97_5_quantile_per_country[i] = quantile(r_MC_per_country,0.975)
    dens = density(r_MC_per_country)
    lines(dens $x, length(data)*dens$y,type="1", col=colors[i],1wd=3)
69 * }
legend("topright",legend=Country_names[1:15], pch = rep(0,15),1wd=rep(2,15),col=colors, cex=1, pt.cex = 1)
* Show results in a tab7e
result_table_r = matrix(c(r_mean_per_country,r_std_per_country,r_2_5_quantile_per_country,r_97_5_quantile_per_country), nrow=length
    (Country_names), ncol=4, byrow=F)
    rownames(result_table_r) <- Country_names
colnames(result_table_r) <- c("Mean","std","Quantile (2.5%)","Quantile (97. 5%)")
result_table_r <- as.table(result_table_r)
result_table_r
```

Country_name_i $=$ rep $(0$, (length(country_names)*1ength(Country_names)-length(Country_names))/2
Country_name_j $=$ rep(0 ,(length(country_names)*iength(country_names)-length(country_names))/2)
r_diff_mean_per_country = rep(0,(length(country_names)*1ength(country_names)-length(Country_names))/2)
r_diff_std_per_country $=\operatorname{rep}\left(0,\left(1 e n g t h\left(c o u n t r y _n a m e s\right) * 1 e n g t h\left(C o u n t r y _n a m e s\right)-1 e n g t h\left(c o u n t r y _n a m e s\right)\right) / 2\right)$
r_diff_2_5_quantile_per_country = rep(0, (length(Country_names)*length(Country_names)-length(Country_names))/2)
$r_{\text {_diff_97_5_quantile_per_country }}=\mathbf{r e p}\left(0,\left(1 e n g t h\left(C o u n t r y _n a m e s\right) * 1 e n g t h\left(C o u n t r y _n a m e s\right)-1 e n g t h\left(C o u n t r y _n a m e s\right)\right) / 2\right)$
$r_{\text {_diff_decision_per_country }=}$ rep(0 , (length(country_names)*length(country_names)-length(country_names))/2)
index = 1
number_of_true_differences =
number_of_true_differences $=0$
for (i in 1:length(Country_names)) $\{$
for (j in 1:length(Country_names)) \{
if $(\mathbf{i}=\mathbf{j})$ \{
next
${ }_{\text {if }}$
next| (i>j) \{
$\}^{\text {ne }}$
Co
Country_name_i[index] = Country_names [i]
country_name_j[index] = country_names [j]
$r_{\text {_diff_mean_per_country }}$ [index] $=$ mean(r _MC_list[[i]]-r_MC_list[[j]])
$r_{\text {_diff_std_per_country[index] }}=s d\left(r_{\text {_MC_l }}\right.$ list[[i]]-r_MC_list[[j]])
r_diff_2_5_quantile_per_country[index] = quantile(r_MC_1ist[[i]]-r_MC_1ist[[j]],0.025)
$\mathbf{r}_{\text {_diff_97_5_quantile_per_country[index] }=\text { quantile (r_MC_list[[i]]-r_MC_list[[j]],0.975) }}$
r_diff_decision_per_country[index] = ifelse(quantile(r_MC_list[[i]]-r_MC_list[[j]],0.025)*quantile(r_MC_list[[i]]-r_MC_list[[j]],0.975)
>0, "True","Faise"
(quantile(r_MC_list[[i]]-r_MC_1ist[[j]],0.025)*quantile(r_MC_list[[i]]-r_MC_list[[j]],0.975) > 0) \{
number_of_true_differences = number_of_true_differences + 1
\}
index = index +1
$\}^{\}}$
$10 \star$ 子
311
312
313 result_table_r_diff = matrix(c(Country_name_i, country_name_j,r_diff_mean_per_country, r_diff_std_per_country, r_diff_2_5_quantile_per_country
r_diff_97_5_quantile_per_country,r_diff_decision_per_country), nrow=length(Country_name_i), ncol=7, byrow=F)
colnames (result_table_r_diff) <- c("Country 1","Country 2","Mean","Std","Quantile (2.5\%)","Quantile (97. 5\%)","Difference?")
colnames(result_table_r_diff) <- c("country 1","count
result_table_r_diff <- as.table(result_table_r_diff)
result_table_r_diff
number_of_true_differences
318
319
319
detach(medals)

