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Introduction 

Simulation studies are often used in Bayesian statistics to study and compare frequentist methods. In 

these studies, multiple datasets are generated with known parameters and a Bayesian analysis is 

conducted on each dataset. The results of the algorithms can then be directly compared to the true known 

parameter values to determine how well the analysis functioned. In this analysis, we conduct a simulation 

study to investigate the performance of Bayesian non-linear regression. The simulated dataset investigates 

the measured pollen count across one year, and we will study the predictions of four separate beta values 

for multiple true parameters.  

Bayesian Model 

The model that will be used for the pollen count data will be 𝑌௧ = 𝜇௧ + 𝜀௧, where: 

µ௧ =  𝑏ଵ + 𝑏ଶ ∗ 𝑒
(ି

(௧ି௕య)మ

ଶ௕ర
మ )

 

The errors are normally distributed with mean 0 and variance σ2 with correlation 𝐶𝑜𝑟(𝜀௧ , 𝜀௧ା௛) = 𝜌௛. The 

mean curve has four parameters, which we will be estimating in the analysis. b1 is the baseline pollen 

mean, b2 is the increase at peak pollen season, b3 is the day of the year which contains the highest mean 

point and b4 controls the width of the peak curve and must therefore be greater than 0.  

The priors that are used for each b value will be uninformative: 

𝑏ଵ, 𝑏ଶ~𝑁(0, 𝑠𝑑(𝑌)ଶ) 

𝑏ଷ~𝑈(0, 365) 

𝑏ସ~𝐺(0.1, 0.1) 

The prior for σ2 will also be uninformative:  

𝜎ଶ~𝐺(0.1, 0.1) 

Computation 

The full model described above was run using Markov Chain Monte Carlo (MCMC) sampling in the R 

programing language on each simulated dataset. The software JAGS was used and integrated into R with 

the library ‘rjags’, which was used to facilitate the MCMC. This MCMC was integrated into a user 

function included at the end of this report and repeated for each combination of n and rho_true. 
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Due to the nature of the model, we provide initial values for the MCMC sampling. The formulas used for 

these values are shown below.  

𝑏ଵ = 𝑚𝑒𝑎𝑛(𝑌) 

𝑏ଶ = 𝑚𝑎𝑥(𝑌) − 𝑚𝑒𝑎𝑛(𝑌) 

𝑏ଷ = 𝑡, 𝑤ℎ𝑒𝑟𝑒 𝑚𝑎𝑥(𝑌) 

𝑏ସ = (𝑡, (𝑤ℎ𝑒𝑟𝑒 𝑚𝑎𝑥(𝑌) + 1)) − (𝑡, (𝑤ℎ𝑒𝑟𝑒 𝑚𝑎𝑥(𝑌) − 1)) 

b1 takes on the mean value of the pollen count Y, b2 takes the max(Y) - b1, b3 takes on the value of the 

“day” t where pollen count is highest, and b4 takes the value of t one above b3 and subtracts that from the 

value of t one below b3 which estimates the width of the peak curve. 

Two chains were run for each simulated dataset, including a discarded burn-in of 10,000. Each chain then 

ran for 20,000 iterations with no thinning. Different priors were tested in a sensitivity analysis, and the 

outcome from early models were not shown to be sensitive to the prior. Following the sampling, the trace 

plots were examined, and each indicated convergence for the different models. The effective sample sizes 

were large and the Gelman and Rubin’s Convergence Diagnostic were about 1 for all models further 

pointing to convergence. 

Data Generation 

Data was simulated using provided code to create the curve described above. An example plot of the 

generated data is shown in figure 1. The general shape of the data is flat with an increase, peak, and 

decrease around the early springtime of the year. The true parameters of the data include n, the number of 

observations in the dataset, b_true, the true b values described previously, sig_true, the true value of 

sigma, and rho_true, the true value of rho. b_true and sig_true were held constant at values of b = (10, 50, 

100, 10) for 1 to 4 respectively, and sig_true = 1. The parameters n and rho_true were adjusted for each 

separate simulation study. The values chosen for n were 50, 100, 200, and 365. The values for rho_true 

were 0.1, 0.25, 0.5, and 0.99. There were thus 16 separate simulations studies run with each combination 

of these two adjusted parameters. 
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Figure 1: Simulated data example with n = 100 and rho_true = 0.9 

Metrics 

There are four metrics that were used for analyzing the performance of the Bayesian inference. These are 

Bias, Mean Squared Error (MSE), Width and Coverage. These metrics were calculated for each b value in 

each simulation, and the results as well as standard errors for these metrics are shown in table 1.  

The Bias indicates how much the estimated b values differ from the true values of b on average. The 

formula for this is: 𝐵𝑖𝑎𝑠 = 𝑚𝑒𝑎𝑛(𝑏௠௘௔௡ − 𝑏௧௥௨௘) for each b. 

The MSE describes the mean of the squared differences between the estimated b and the true b. The 

formula used for this calculation is: 𝑀𝑆𝐸 = 𝑚𝑒𝑎𝑛((𝑏௠௘௔௡ − 𝑏௧௥௨௘)ଶ) for each b.  

The Width calculation simply summarizes the average range of the 95% credible intervals for each 

estimated b. The formula for this calculation is: 𝑊𝑖𝑑𝑡ℎ = 𝑚𝑒𝑎𝑛(𝑏଴.ଽ଻ହ − 𝑏଴.଴ଶହ) for each b. 

Finally the Coverage is used to calculate how often the true b appears in the 95% credible intervals from 

each simulation study on average, with the formula being:  𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑚𝑒𝑎𝑛((𝑏଴.଴ଶହ <

𝑏௧௥௨௘) & (𝑏௧௥௨௘ <  𝑏଴.ଽ଻ହ)) for each b. 
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Results 

For each b1, we see that smaller values 

of rho and larger values of n lead to 

overall better results. In fact, when n = 

365 and rho = 0.1, there is a 99% 

coverage with a 0.01 standard error. 

For almost every b2, as n increases and 

rho decreases, the absolute value of 

the bias and the MSE improves, but 

coverage actually decreases. This is 

interesting as the precision improves 

where many more b2 values are close 

to the true b2, but the width of the 

credible interval decreases and thus 

the coverage decreases as well when 

rho increases. Overall, the best 

combination for b2 was n = 365 and 

rho = 0.1. For b3, smaller values of n 

lead to worse bias but better coverage. 

On the other hand, as rho increases the 

coverage decreases but the bias 

improves. The best results for b3 came 

from n = 200 and rho = 0.1. Finally, b4 

follows a similar pattern, with bias and 

MSE and coverage overall improving 

Table 1: b value metrics for each n and rho simulation data 

n rho beta BIAS BIAS SE MSE MSE SE WIDTH WIDTH SE COV COV SE
50 0.1 b1 -0.009 0.015 0.023 0.004 0.615 0.007 0.940 0.024
50 0.1 b2 -0.329 0.084 0.800 0.110 3.209 0.034 0.900 0.030
50 0.1 b3 -0.019 0.019 0.035 0.006 0.739 0.008 0.930 0.026
50 0.1 b4 0.042 0.018 0.032 0.006 0.764 0.008 0.940 0.024
50 0.25 b1 -0.009 0.015 0.023 0.004 0.613 0.007 0.950 0.022
50 0.25 b2 -0.329 0.084 0.800 0.110 3.208 0.034 0.900 0.030
50 0.25 b3 -0.020 0.019 0.035 0.006 0.742 0.008 0.920 0.027
50 0.25 b4 0.043 0.018 0.033 0.006 0.764 0.009 0.940 0.024
50 0.5 b1 -0.010 0.015 0.023 0.004 0.613 0.006 0.940 0.024
50 0.5 b2 -0.328 0.084 0.803 0.110 3.208 0.034 0.890 0.031
50 0.5 b3 -0.019 0.019 0.035 0.006 0.739 0.008 0.910 0.029
50 0.5 b4 0.042 0.018 0.033 0.006 0.762 0.008 0.940 0.024
50 0.99 b1 -0.078 0.063 0.396 0.063 0.447 0.013 0.380 0.049
50 0.99 b2 -0.185 0.070 0.515 0.075 2.338 0.066 0.880 0.033
50 0.99 b3 -0.014 0.013 0.017 0.002 0.539 0.015 0.940 0.024
50 0.99 b4 0.039 0.019 0.037 0.006 0.554 0.016 0.870 0.034

100 0.1 b1 -0.002 0.011 0.013 0.002 0.428 0.003 0.940 0.024
100 0.1 b2 -0.209 0.057 0.369 0.049 2.222 0.015 0.940 0.024
100 0.1 b3 -0.010 0.012 0.015 0.002 0.511 0.004 0.970 0.017
100 0.1 b4 0.029 0.012 0.015 0.003 0.525 0.004 0.970 0.017
100 0.25 b1 -0.003 0.012 0.013 0.002 0.428 0.003 0.940 0.024
100 0.25 b2 -0.209 0.058 0.373 0.049 2.221 0.015 0.940 0.024
100 0.25 b3 -0.010 0.012 0.015 0.002 0.511 0.004 0.960 0.020
100 0.25 b4 0.028 0.012 0.015 0.003 0.526 0.004 0.970 0.017
100 0.5 b1 -0.003 0.012 0.015 0.002 0.426 0.003 0.920 0.027
100 0.5 b2 -0.212 0.061 0.416 0.055 2.213 0.015 0.910 0.029
100 0.5 b3 -0.010 0.013 0.017 0.002 0.510 0.004 0.960 0.020
100 0.5 b4 0.029 0.013 0.017 0.003 0.524 0.004 0.970 0.017
100 0.99 b1 -0.040 0.064 0.403 0.060 0.303 0.009 0.120 0.033
100 0.99 b2 -0.159 0.074 0.572 0.077 1.574 0.044 0.680 0.047
100 0.99 b3 -0.004 0.012 0.014 0.002 0.362 0.010 0.890 0.031
100 0.99 b4 0.004 0.020 0.038 0.005 0.371 0.010 0.610 0.049
200 0.1 b1 0.002 0.008 0.006 0.001 0.302 0.001 0.970 0.017
200 0.1 b2 -0.058 0.044 0.194 0.032 1.566 0.006 0.900 0.030
200 0.1 b3 0.003 0.010 0.010 0.001 0.359 0.002 0.950 0.022
200 0.1 b4 0.003 0.009 0.008 0.001 0.368 0.002 0.970 0.017
200 0.25 b1 0.002 0.008 0.006 0.001 0.301 0.001 0.960 0.020
200 0.25 b2 -0.057 0.047 0.219 0.036 1.565 0.007 0.900 0.030
200 0.25 b3 0.004 0.011 0.011 0.002 0.358 0.002 0.920 0.027
200 0.25 b4 0.002 0.009 0.009 0.001 0.368 0.002 0.970 0.017
200 0.5 b1 0.002 0.010 0.010 0.001 0.300 0.001 0.840 0.037
200 0.5 b2 -0.051 0.057 0.325 0.054 1.556 0.007 0.850 0.036
200 0.5 b3 0.007 0.013 0.016 0.002 0.356 0.002 0.880 0.033
200 0.5 b4 0.000 0.011 0.013 0.001 0.366 0.002 0.900 0.030
200 0.99 b1 0.001 0.061 0.368 0.045 0.211 0.006 0.150 0.036
200 0.99 b2 -0.078 0.078 0.612 0.085 1.095 0.033 0.510 0.050
200 0.99 b3 0.012 0.011 0.013 0.002 0.250 0.008 0.700 0.046
200 0.99 b4 -0.014 0.020 0.042 0.006 0.256 0.007 0.410 0.049
365 0.1 b1 0.001 0.006 0.003 0.000 0.223 0.001 0.990 0.010
365 0.1 b2 -0.025 0.032 0.101 0.012 1.156 0.004 0.940 0.024
365 0.1 b3 -0.004 0.008 0.006 0.001 0.265 0.001 0.920 0.027
365 0.1 b4 0.005 0.008 0.006 0.001 0.272 0.001 0.910 0.029
365 0.25 b1 0.002 0.007 0.005 0.001 0.222 0.001 0.860 0.035
365 0.25 b2 -0.023 0.037 0.137 0.016 1.153 0.004 0.890 0.031
365 0.25 b3 -0.004 0.009 0.008 0.001 0.264 0.001 0.820 0.039
365 0.25 b4 0.005 0.009 0.008 0.001 0.271 0.001 0.850 0.036
365 0.5 b1 0.002 0.009 0.008 0.001 0.221 0.001 0.740 0.044
365 0.5 b2 -0.015 0.049 0.240 0.028 1.144 0.005 0.710 0.046
365 0.5 b3 -0.003 0.012 0.014 0.002 0.262 0.001 0.720 0.045
365 0.5 b4 0.005 0.012 0.014 0.002 0.269 0.001 0.720 0.045
365 0.99 b1 0.021 0.060 0.355 0.039 0.151 0.004 0.110 0.031
365 0.99 b2 -0.022 0.060 0.359 0.053 0.782 0.022 0.440 0.050
365 0.99 b3 0.002 0.012 0.015 0.002 0.179 0.005 0.540 0.050
365 0.99 b4 -0.002 0.018 0.032 0.005 0.184 0.005 0.460 0.050



- 6 - 
 

as n increases. As rho increases though, the bias and MSE improve, but the coverage decreases 

dramatically. The best parameters for b4 were n = 200 and rho = 0.25.  

The best parameter combinations for each b are highlighted in yellow in table 1. Looking at the parameter 

combinations shows that the best overall combination to estimate the b values accurately was n = 365 and 

rho = 0.1. The bias and MSE for each of the b’s at this simulation point are relatively low and the 

coverage is above 91% for each as well. 

Discussion 

Overall, as n increases and at lower values of rho, the b predictions performed better. b4 appears to be the 

best estimated parameter, followed by b1, b3, and b2. b2 especially has relatively poor performance when 

compared to the other three b values which could be related to the correlation that exists in the data. 

It is very interesting that as rho increases, the coverage decreases. This is because the model we have 

chosen does not account for the correlation that exists between each Y value. There is built in correlation 

for the simulated data and as shown in the results, not modelling and accounting for this correlation leads 

to more mistakes when the true correlation is especially high.   

In order to model true pollen data, correlation would have to be taken into account. It intuitively makes 

sense that the amount of pollen on any given day is correlated with the pollen count on both the previous 

and following day. The model used to define the real data would have to account for this. It would be 

important to measure this correlation as a whole and attempt to model it, which may require more 

parameters to effectively do this.   

In addition, we would ideally have data for every day of the year, to have an n = 365 for the dataset. 

Knowing that having more data is better, even if we are unable to have n = 365 observations we can use 

MCMC sampling to create a posterior distribution and estimate the parameters. 

The last point to consider is that there may be multiple peaks in the true data rather than just the one that 

appeared in the simulated data. In order to account for this, we would need to explore the shape of the true 

data and take this all into account when modelling this pollen data. 
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Code Appendix 

### 540 Final 
 
pollen_fit <- function(t,Y){ 
   
  # INIT VALUES 
  init1 <- mean(Y) 
  init2 <- max(Y) - init1 
  init3 <- t[which.max(Y)] 
  init4 <- t[which.max(Y) + 1] - t[which.max(Y) - 1] 
   
  inits <- list(b=c(init1,init2,init3,init4)) 
   
  model_string <- textConnection("model{ 
     for(i in 1:n){ 
       Y[i]  ~ dnorm(mu[i],tau) 
       mu[i] <- b[1] + b[2] * exp(-((t[i] - b[3])^2)/(2 * b[4]^2)) 
     } 
     b[1] ~ dnorm(0,precision) 
     b[2] ~ dnorm(0,precision) 
     b[3] ~ dunif(0,365) 
     b[4] ~ dgamma(0.1,0.1) 
     tau ~ dgamma(0.1,0.1) 
  }") 
   
  data <- list(Y=Y, t=t, n=length(Y),precision=1/(sd(Y))^2) 
  model <- jags.model(model_string,data = data, init=inits,n.chains=2,quiet=TRUE) 
  update(model, 10000, progress.bar="none") 
  samples <- coda.samples(model, variable.names=c("b"),  
                          n.iter=20000, progress.bar="none")[[1]] 
  b1 <- samples[,1] 
  b2 <- samples[,2] 
  b3 <- samples[,3] 
  b4 <- samples[,4] 
  out <- list("mean"=list(mean(b1),mean(b2),mean(b3),mean(b4)), 
              "CI" = list(quantile(b1,c(0.025,0.975)),quantile(b2,c(0.025,0.975)), 
                          quantile(b3,c(0.025,0.975)),quantile(b4,c(0.025,0.975)))) 
   
  return(out)} 


