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1. INTRODUCTION 

The spatial distribution of the American black bear is studied using a dataset from 

https://www.inaturalist.org. The objective of this study is i) to examine ecological niche of black 

bears, and ii) to test for their local adaptation by ecoregion. The dataset contains n = 927 50 km2 

regions, each located in either one of four ecoregions (Marine West Coast Forest, Mediterranean 

California, North American Deserts, Northwestern Forested Mountains). There are 621 regions 

that include protected lands and the other 306 do not include protected lands. The covariates 

used to understand the ecological niche are proportion of the region that is forest, proportion of 

the region that is grassland, proportion of the region that is cropland, annual average temperature, 

annual average precipitation, and human population. 

2. MODELS AND HYPOTHESES 

The response variable is the number of black bear reports in region i, 𝑌! ∈

{0,1, … ,𝑁!}	for	𝑖 = 1,2, … , 𝑛. The likelihood is 𝑌!~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁! , 𝑝!), where 𝑝! is the true probability 

of observing at least one black bear in region i. The covariates 𝑋!" for 𝑗 = 1,… ,6 are standardized 

to each has a mean of 0 and a standard deviation of 1. The analyses are done separately for 

regions that include and do not include protected lands since there is a tendency in the data that 

more black bear reports submitted for surveys in regions that include protected lands. Thus, it is 

reasonable to assume that the variation of the number of black bear reports and their ecological 

niche are different for protected and unprotected regions.  

It is worth to assess the importance of each covariates to predict the ecological niche of 

black bear, and we may want to only include the “important” covariates in the models. To do this, 

we perform stochastic search variable selection (SSVS) using the logistic regression model: 

𝑙𝑜𝑔𝑖𝑡(𝑝!) = 𝛽# +B𝛽"𝑋!"
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with priors 𝛽#, 𝛽"~𝑁𝑜𝑟𝑚𝑎𝑙(0,0.01). Then, in further analyses, we include covariates with inclusion 

posterior probability > 0.5 given by SSVS, considering this as a measurement of importance. 



 

Since the SSVS is also done separately for protected and unprotected regions, we may see 

different covariates are included in the models for both types of region.  

The following three logistic regression models are built each for protected and unprotected 

regions, where p is the number of covariates included in the models after SSVS and 𝑒! ∈ {1,2,3,4} 

is the ecoregion where region i is located. 

• Model 1: The slopes and the intercept are treated as fixed effects, thus they are the same for 

all ecoregions. The logistic regression model is the same as the model used for SSVS, except 

that the number of covariates p is different (covariates are selected based on SSVS). 

• Model 2: The slopes are still fixed, but the intercept is treated as mixed effect with random 

effects for the ecoregion. The logistic regression model is 

𝑙𝑜𝑔𝑖𝑡(𝑝!) = 𝛽# + 𝜃'! +B𝛽"𝑋!"
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with priors 𝛽#, 𝛽"~𝑁𝑜𝑟𝑚𝑎𝑙(0,0.01) and double-exponential random effects 𝜃'!~𝐷𝐸(0, 𝜏), with 

prior 𝜏	~𝐺𝑎𝑚𝑚𝑎(0.1,0.1). 

• Model 3: Both the intercept and the slopes are now treated as mixed effects allowing them to 

vary based on the ecoregion. The logistic regression model is 

𝑙𝑜𝑔𝑖𝑡(𝑝!) = 𝛽# + 𝜃#,'! +BM𝛽" + 𝜃",'!N𝑋!"
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with priors 𝛽#, 𝛽"~𝑁𝑜𝑟𝑚𝑎𝑙(0,0.01) and double-exponential random effects 𝜃#,'!~𝐷𝐸(0, 𝜏#) and 

𝜃",'!~𝐷𝐸(0, 𝜏"), with priors 𝜏#~𝐺𝑎𝑚𝑚𝑎(0.1,0.1) and 𝜏"~𝐺𝑎𝑚𝑚𝑎(0.1,0.1). 

3. COMPUTATION 

All models were fit using JAGS package in R, separately for regions with protected lands 

and with no protected lands. For SSVS, the first 10,000 samples were discarded as a burn-in then 

50,000 samples were drawn for each of 3 chains with a thinning factor of 5. For building Model 1, 

Model 2, and Model 3, the burn-in samples are the first 30,000 then 100,000 samples were drawn 

for each of 2 chains. The model convergence is checked by looking at the trace plot, the Gelman-



 

Rubin statistic (< 1.1 indicates convergency), and the effective sample size (> 1000 indicates 

convergency). The trace plots show that convergency is attained for all parameters in all models. 

The Gelman-Rubin statistics are calculated for each parameter in every model, and the 

multivariate potential scale reduction factors (PSRF) for five models presented in this report are 

1, while another model gets 1.04. The effective sample size (ESS) for all parameters in all models 

are also calculated, in general all models look good having ESS far greater than 1000. However, 

in Model 2 and Model 3 for regions with protected lands, not all random effects achieve ESS > 

1000 (although they are all > 100)1. Regardless, the Gelman-Rubin statistics indicate 

convergency, thus all models still seem reasonable. 

4. MODEL COMPARISONS 

Based on the results from SSVS (Table 1), we select covariates with inclusion posterior 

probability > 0.5 to be included in Model 1, Model 2, and Model 3. The covariates included i) in 

the model for regions with protected lands are proportion of the region that is grassland, proportion 

of the region that is cropland, annual average precipitation, human population (p = 4), and ii) in 

the model for regions with no protected lands are proportion of the region that is forest, annual 

average temperature (p = 2). It is then reasonable to say that the ecological niche of black bear 

in regions with protected lands is more determined by four out of six covariates, while in regions 

with no protected lands this is explained rather by the other two covariates.  

Table 1 Summary of the posteriors from SSVS 

 Regions with protected lands Regions with no protected lands 
Incl. Prob. 50% 5% 95% Incl. Prob. 50% 5% 95% 

𝛽!"#$%& 0.25 0 -0.19 0 0.77 0.35 0 0.68 
𝛽'#(%% 1 0.40 0.26 0.53 0.50 0 -0.73 0.02 
𝛽)#"* 0.98 -0.45 -0.75 -0.19 0.38 0 -0.63 0.09 
𝛽&$+* 0.50 0 -0.25 0 0.94 -0.59 -1.01 0 
𝛽*#$),* 1 0.58 0.47 0.70 0.24 0 -0.23 0 
𝛽-.+(/ 0.81 -0.10 -0.18 0 0.35 0 -0.64 0 

 
1 I tried to increase the number of iterations to 500,000 and use different combinations of random effects 
(Gaussian/Double-Exponential) and priors (Gamma/Half-Cauchy), the ESS did not improve. Using DE random effects 
actually gives better ESS (> 100) for the random effects that do not achieve ESS > 1000, using Gaussian random 
effects only gives ESS around 20 – 30 for these parameters. 



 

The model performance are compared using the deviance information criteria (DIC) and 

the Watanabe-Akaike information criterion (WAIC). The comparisons of the three models given 

these criteria are summarized in Table 2 for both regions with protected lands and regions with 

no protected lands. Although Model 3 gives the lowest DIC and WAIC for both regions with 

protected lands and with no protected lands, we use Model 2 to examine ecological niche of black 

bear and to test for their local adaptation. These models are easier to interpret and seem to be 

enough to address the objectives of this study. It is also harder to compare protected and 

unprotected regions using Model 3 to test for black bear’s local adaption. 

Table 2 Model comparisons for regions that include protected lands 

 Regions with protected lands Regions with no protected lands 
DIC WAIC Multi PSRF DIC WAIC Multi PSRF 

Model 1 1267 1356 1 180 183 1 
Model 2  1162 1278 1 167 171 1 
Model 3 1114 1241 1.04 162 168 1 

 

5. RESULTS 

Applying Model 2, the posteriors of the parameters are summarized in Table 3 (for regions 

with protected lands) and Table 4 (for regions with no protected lands). All fixed effects 

parameters in the protected region’s model are significant, while in the unprotected region’s model 

only 𝛽# and 𝛽* are significant2. Based on these results, we can suggest the following regarding 

the ecological niche of black bear: 

• In the regions that include protected lands, with all other covariates held fixed: i) increasing 

the proportion of the region that is grassland by one multiplies the odds of observing a black 

bear by exp(0.45), ii) increasing the proportion of the region that is cropland by one divides 

the odds by exp(0.67), iii) increasing the precipitation by one multiplies the odds by exp(0.45), 

iv) increasing the human population by one divides the odds by exp(0.25). 

 
2 However, using Model 1, all fixed effects parameters in the unprotected region’s model are significant.  



 

• In the regions that do not include protected lands, with all other covariates held fixed: i) 

increasing the proportion of the region that is forest by one multiplies the odds by exp(0.64), 

ii) increasing the temperature by one divides the odds by exp(0.04) but note this is not 

significant. 

Thus, we can conclude that the ecological niche of black bear in the regions that include protected 

lands is grassland area with higher precipitation. Meanwhile, the ecological nice of black bear in 

the regions that do not include protected lands is forest area. 

To test for black bear’s local adaptation, we look at the random effects parameters. In the 

protected region’s model, the significant random effect is 𝜃'", and in the unprotected region’s 

model, the significant random effect is 𝜃'#3. This indicates that, with all covariates set to be zero, 

we can observe the following.  

• In the protected regions, the odds of observing black bear is lower in North American Deserts 

than other ecoregions, which is exp(−10.84). 

• In the unprotected regions, the odds is higher in Northwestern Forested Mountains than other 

ecoregions, which is exp(−3.53).	 

Thus, it seems reasonable to say that there is an indication of local adaption although the rest of 

random effects parameters are not significant. 

Table 3 Summary of the posteriors for 

regions with protected lands 

 Mean 2.5% 97.5% 
𝛽# -4.01 -7.97 -1.63 
𝜃'$ 0.58 -1.80 4.54 
𝜃'% 0.80 -1.58 4.76 
𝜃'" -6.83 -19.93 -1.82 
𝜃'# 0.22 -2.16 4.18 
𝛽+,-.. 0.45 0.29 0.60 
𝛽/,0( -0.67 -1.06 -0.34 
𝛽(,'/!( 0.43 0.29 0.58 
𝛽123-4 -0.25 -0.34 -0.16 

 
3 The 95% credible interval slightly includes zero, but we consider this as significant. 

 
Table 4 Summary of the posteriors for 

regions with no protected lands 

 Mean 2.5% 97.5% 
𝛽# -5.28 -7.02 -3.43 
𝜃'$ -0.29 -2.27 1.50 
𝜃'% -0.74 -3.47 0.94 
𝜃'" -0.22 -2.39 1.56 
𝜃'# 1.75 -0.05 3.79 

𝛽*0,'.5 0.64 0.27 1.00 
𝛽5'3( -0.04 -0.68 0.60 



 

R Code 
 
SSVS (for regions with protected lands) 
m <- textConnection("model{ 
 #Likelihood 
 for(i in 1:n){ 
 Y[i] ~ dbin(p[i],N[i]) 
 logit(p[i]) <- alpha + inprod(X[i,],beta[])} 
                      
 #Prior                    
 for(j in 1:6){ 
 beta[j] <- gamma[j]*delta[j] 
 gamma[j] ~ dbern(0.5) 
 delta[j] ~ dnorm(0,tau)} 
  
 alpha ~ dnorm(0,0.01) 
 tau   ~ dgamma(0.1,0.1) 
}") 
                      
data   <- list(Y=Y,X=X,N=N,n=n) 
burn   <- 10000; iters  <- 50000; chains <- 3  
model  <- jags.model(m,data = data, n.chains=chains,quiet=TRUE) 
update(model, burn, progress.bar="none") 
samps <- coda.samples(model, variable.names=c("beta"), thin=5, n.iter=iters, 
progress.bar="none") 
 
#summarize posterior of beta 
beta    <- NULL 
for(l in 1:chains){ 
  beta <- rbind(beta,samps[[l]]) 
} 
 
Inc_Prob <- apply(beta!=0,2,mean) 
Q        <- t(apply(beta,2,quantile,c(0.5,0.05,0.95))) 
out      <- cbind(Inc_Prob,Q) 
 
  



 

Model 2: random effects on intercept for ecoregion (for regions with protected lands) 
m <- textConnection("model{ 
 #Likelihood 
  for(i in 1:n){ 
  Y[i] ~ dbin(p[i],N[i]) 
  logit(p[i]) <- theta[er[i]] + inprod(X[i,],beta[])} 
                      
  #Random effect 
   for(j in 1:J){theta[j] ~ ddexp(0,tau)} 
   tau ~ dgamma(0.1,0.1) 
                      
  #Prior for fixed effects                    
   for(j in 1:p){beta[j] ~ dnorm(0,0.01)}\ 
                      
  #WAIC calculations 
   for(i in 1:n){like[i] <- dbin(Y[i],p[i],N[i])} 
}") 
 
#load the model 
dat <- list(Y=Y,N=N,X=X,n=n,er=er) 
init <- list(theta=rep(0,J),beta=rep(0,p+1)) 
model5 <- jags.model(m5, inits=init, data = dat, n.chains=2,quiet=TRUE) 
 
#generate samples 
update(model, 30000, progress.bar="none") 
samp <- coda.samples(model, variable.names=c("theta","beta"), n.iter=100000, 
progress.bar="none") 
 
#compile results 
ESS <- effectiveSize(samp) 
GEL <- gelman.diag(samp) 
 
stat <- summary(samp)$statistics 
quant <- summary(samp)$quantiles 
 
#compute DIC 
dic5 <- dic.samples(model,n.iter=100000,progress.bar="none") 
 
#compute WAIC 
waic <- coda.samples(model, variable.names=c("like"), n.iter=100000, progress.bar="none") 
like <- waic5[[1]] 
fbar <- colMeans(like) 
P <- sum(apply(log(like),2,var)) 
WAIC <- -2*sum(log(fbar))+2*P 


