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Introduction 

Our data is a summary of surveys of black bear sightings from amateur naturalists, who conduct surveys 
around the U.S. and upload their results to iNaturalist. The data contain one row for each location, and 
include the number of sightings, the number of surveys at that location, data on the characteristics of 
the location, and the ecological region, which can be one of four broad areas of the United States. The 
locations are randomly sampled, 50 km2 areas from across the U.S. I recoded the grassland, forest, and 
cropland variables to be equal to 1 if the location is at least 1/3 that type and 0 otherwise to simplify the 
model, since otherwise the three variables would be (more) collinear and have a small scale, which 
might cause issues with the model estimation. 

Our objective is to determine whether black bears have adapted differently to the different ecological 
regions. If the determinants of bear presence differ between ecological regions, that would be evidence 
of local adaptation. The independent variables are the proportion of each location that is forest, 
grassland, or cropland, the annual average temperature and precipitation of the location, the location’s 
human population, and whether the location includes protected lands, as well as the location’s 
ecological region. 

Models and hypotheses 

A hierarchical model is the most natural for this problem, since our hypothesis is that coefficients for 
some of the regressors differ by ecological region. A hierarchical model with ecological region as a 
process layer will allow the regressors to differ by ecological region while taking advantage of the 
strengths of MCMC. 

To model the bear sightings, a binomial distribution would be most appropriate since our outcome is the 
number of “successes” (bear sightings) out of a fixed number of surveys. However, the data have a large 
number of zeros, so I used a zero-inflated binomial distribution for the response. I used the usual logit 
link function to fit the Bayesian GLM. 

To test the hypothesis of local adaptation, I first used DIC and WAIC to test if a hierarchical model was 
actually appropriate and fit the data better than a non-hierarchical model with no local adaptation. As 
discussed below a hierarchical model was more appropriate than a nonhierarchical model. To determine 
what local adaptation we have evidence for, I performed pairwise comparisons, by the four regions, of 
the slope estimates using the MCMC samples from the posterior distributions of the slopes. 

The fully hierarchical model is below, i.e., with both the binary and positive portions hierarchical. The 
other models tested were a model with a non-hierarchical binary portion of the model and a hierarchical 
positive portion, and with both nonhierarchical binary and positive portions. I display the fully 
hierarchical model below since the other two are special cases of this one. For simplicity X indicates the 
design matrix which includes an intercept. 

 



Data layer:  

𝑌௜ = 𝑌௕௜௡,௜𝑌௣௢௦,௜              𝑌௕௜௡,௜ ∈ {0, 1} ,   𝑌௣௢௦,௜ ∈ {0, 1, 2, … , 𝑁௜}    

For observation i. 

Process layer:  

𝑌௕௜௡,௜ ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑞௜),    𝑙𝑜𝑔𝑖𝑡(𝑞௜) = 𝑿𝒊∙𝜹𝒌 

𝑌௣௢௦,௜~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁௜ , 𝑝௜),    𝑙𝑜𝑔𝑖𝑡(𝑝௜) = 𝑿𝒊∙𝜸௞ 

For observation i and the observation’s ecological region k. 

Prior layer: 

𝜹𝒌 ~ 𝑀𝑉𝑁(𝝀, 𝜏௔𝑰) 

𝜸𝒌 ~ 𝑀𝑉𝑁(𝜷, 𝜏௘𝑰) 

For ecological region k. 

Hyperprior layer: 

𝝀 ~ 𝑀𝑉𝑁(𝟎, 0.001𝑰) 

𝜷 ~ 𝑀𝑉𝑁(𝟎, 0.001𝑰) 

𝜏௔ , 𝜏௘~𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(0.1, 0.1) 

Computation 

Sampling was performed using JAGS in R. 10,000 samples were used for burn-in and two chains of 
20,000 samples each were used as the posterior sample. Convergence was assessed graphically, with 
the effective sample size, and with the Geweke diagnostic.  

For the preferred model (see below), graphics showed that all chains except for the coefficient for the 
cropland variable had converged reasonably well. The effective sample size, however, showed that only 
several of the chains for the coefficients had fully converged. The Geweke diagnostic showed that all the 
coefficients of interest except for the cropland variables had converged. 

Since the time required to even run a relatively small number of samples from the three models under 
consideration was very high, I decided to omit the cropland variable from further analysis and consider 
the other coefficients’ chains as having converged reasonably well on the basis of two out of three 
diagnostics. With more time this could perhaps be improved with more MCMC samples, and the 
cropland variable was not too worrying since there were not as many observations that had cropland 
compared to forest and grassland. 

Model Comparisons 

The three models under comparison were the fully hierarchical model, where both the binary and 
positive portions’ linear predictors have slopes that can vary by ecological region; a partially hierarchical 
model, where only the positive portion’s linear predictor slopes can vary by ecological region; and a non-



hierarchical model, where all slopes are constant across ecological region. Models were compared using 
DIC and WAIC. The results are displayed in Table 1. 

Table 1. Model comparisons 

Model WAIC DIC 
Fully hierarchical 15,886 1,040 
Partially hierarchical 5,133 1,040 
Non-hierarchical 6,977 1,134 

 

DIC has no preference between the fully and partially hierarchical models, and WAIC prefers the 
partially hierarchical model, so I chose the partially hierarchical model to test the hypothesis that black 
bears exhibit some local adaptation. 

Fit was assessed with posterior predictive checks. Since the minimum of the sample will always be zero, 
minimum and range were not useful, so I checked the maximum and mean. The maximum and mean 
both showed no evidence of lack of fit (figure 1). The Bayesian p-value for the maximum was 0.28, and 
for the mean was 0.23. 

 

Figure 1. Posterior Predictive Checks 

Results 

To check for local adaptation by ecological region, I checked, for each independent variable, whether 
some ecological regions had different coefficients than other ecological regions. I performed this check 
pairwise by region. Since inference on the actual regression estimates is of less interest than the 
differences between ecological regions, I do not summarize the posterior distributions for all 28 
estimated slopes displayed below aside from the pairwise comparisons. 

The estimated regression coefficients (using posterior mean) for the positive part of the model for each 
ecological region are displayed in Table 2. Estimates that differ with at least 95% probability from any 
other estimates in the same row are bolded. There is evidence of local adaptation with respect to 
several variables and ecological regions. 

 

 



 

Table 2. Linear predictor slope estimates 

 Marine West Coast 
Forest 

Mediterranean 
California 

North American 
Deserts 

Northwestern 
Forested 
Mountains 

Forest -0.120 -0.115 -0.122 -0.121 
Grassland -0.118 -0.275 -0.289 -0.462 
Cropland (no convergence) -7.059 -7.059 -0.758 -7.061 
Temperature -0.004 -0.101 -0.051 0.022 
Precipitation 0.000 0.003 -0.001 -0.001 
Human population 0.001 0.004 -0.007 -0.007 
Protected -0.079 -0.275 -0.283 -0.503 

 

In sum, this analysis finds the following evidence of local adaptation of black bears: 

 Temperature is associated with decreased expected black bear sightings in Mediterranean 
California; slightly decreased (less Mediterranean California) expected bear sightings in Marine 
West Coast Forest; and greater expected bear sightings in Northwestern Forested Mountains 

 Precipitation is associated with no change in expected black bear sightings in Marine West Coast 
Forest; increased expected bear sightings in Mediterranean California; and decreased expected 
bear sightings in Northwestern Forested Mountains  

 Human population is associated with increased expected black bear sightings in Mediterranean 
California and decreased expected bear sightings in Northwestern Forested Mountains 

 

Discussion 

This analysis used hierarchical modeling to find evidence for local adaptation of black bears to different 
ecological regions in the United States. The effects of temperature, precipitation, and human population 
on bear populations (indicated by frequency of bear sightings) differed by ecological region, indicating 
that bears’ habitat preferences are different depending on the local ecology. 

There are several limitations to the analysis. The data were randomly sampled locations rather than the 
full data, and did not include the spatial location. The full dataset with spatial information included could 
have provided more complete data, and could allow accounting for spatial covariance between 
observations. Another limitation is that this model did not achieve full, unambiguous convergence in a 
reasonable run time. With (possibly greatly) more time available it might be feasible to achieve full 
convergence of all parameters’ posterior samples. 

  



############################################################## 
#                                            Hierarchical Positive Model                                       # 
#                                         Non-Hierarchical Binary Model                                    # 
############################################################## 
 
hier2_model_string <- textConnection("model{ 
  #Data layer 
  for(i in 1:n){ 
    Y_bin[i] ~ dbinom(q[i], 1) 
    Y_pos[i] ~ dbinom(pi[i], N[i]) 
   
    #Process  
    logit(q[i]) <- a + inprod(X[i,], delta[]) #nonrandom slope/intercept 
    logit(pi[i]) <- b[ecoregions[i]] + inprod(X[i,], gamma[,ecoregions[i]]) #gamma is random slope 
   
    # Likelihood 
    like[i] <- ifelse(Y[i]==0, q[i] + (1-q[i])  * dbin(Y[i], pi[i], N[i]), (1-q[i])*dbin(Y[i],pi[i], N[i])) 
  } 
   
  #Prior layer 
  for(j in 1:p){ 
    delta[j] ~ dnorm(0, 0.001) 
    for(k in 1:n_eco){ 
      gamma[j,k]  ~ dnorm(beta[j], taue) #random effect for coefficient j, in eco k 
    } 
  } 
   
  for(k in 1:n_eco){ 
    b[k] ~ dnorm(0, 0.001) 
  } 
   
  a ~ dnorm(0, 0.001) 
   
  #Hyperprior layer 
  for(u in 1:p){ 
    beta[u] ~ dnorm(0, 0.001) 
  } 
  taue ~ dgamma(0.1, 0.1) 
   
  # Posterior Predictive Checks 
  for(i in 1:n){ 
    Y2_bin[i] ~ dbinom(q[i], 1) 
    Y2_pos[i] ~ dbinom(pi[i], N[i]) 
    Y2[i] <- Y2_bin[i] * Y2_pos[i] 
  } 
   
  D[1] <- mean(Y[] - Y2[]) 
  D[2] <- max(Y2[]) 
  D[3] <- mean(Y2[]) 
}") 

 


