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Introduction:

Over the last year, COVID-19 has become a global pandemic that has altered the world
and changed the paradigm of basic daily life. Developing a vaccine has been an important step
in combatting the pandemic, and paving the way for a return to pre-pandemic life. This paper
will analyze the trial results of the Moderna vaccine, an mMRNA-based vaccine that has been one
of the first vaccines brought to market.

Placebo Analysis:
One of the most important indicators for a vaccine is its efficacy, which can be defined as
E—=1 u , where 8, is the probability of a randomly-selected person who has
Cotocta received the vaccine contracting the virus. 6,00 iS Similar, but the
randomly-selected person received the placebo. Our first step will be looking to find both a
reasonable likelihood for the data, and a conjugate prior distribution for 6;,cer. Given the data
states the number of people per group, and then the total number of people per group who
contracted the virus, a reasonable likelihood would be binomial. In mathematical terms:
Y |06 ~ Binomial(N,8), where N is the total number of people in the placebo group, and 6 is the
probability of contracting the virus. A reasonable uninformative conjugate prior would be a
Beta(1, 1) distribution (8 ~ Beta(1,1), which is also equivalent to a Uniform(0,1) distribution. This
is a good prior in this case because it assigns each 8 value the same probability, and only has
values possible from 0 to 1. The main assumption we will be making in our model is that the
randomly selected patients are independent. This is reasonable since one patient contracting
the virus should not impact another, unless they are in contact with each other, and with such a
large sample, it is likely this does not play a role. In the next section, we will derive a posterior

from our likelihood and prior.



Derivation:
The following steps will show the derivation of the posterior. In these steps, we will use

the general prior 8 ~ Beta(a,b) in computations.

Y | @ ~ Binomial(N, )
0 ~ Beta(a, p)

POY) « [8Y(1-0)NTY] 057 (1 - 0)F!
FI[H | YJI - H}’ﬂ:—l{l _ H}N—Yﬂs—]

P(6|Y) « Beta(a +Y,B+N-Y)

With 6 ~ Beta(1, 1):

P(6|Y) « Beta(Y +1,N—Y +1)

The posterior distribution of 8., Of all patients can be visualized below:
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Figure 1: The 8,,ce00 distribution for all patients with prior Beta(1,1).

Efficacy Analysis:

First, it is important to note that the 6,,... had an identical likelihood and prior as Bepo,
with the only difference being that the group was the vaccine group and not the placebo group.
Using Monte Carlo sampling, with samples of 100,000 points, a Bayesian analysis of the
efficacy of the vaccine was performed. This was done with both the original prior 6 ~ Beta(1,1),
as well as with four other priors to determine the sensitivity of the results to the prior. The
results, specifically the mean and 95% credible set are tabulated and outputted below. As can

be seen, there is slight variation in the results depending on the prior, but not massive



differences, with the largest differences being between .03-.04. Thus, we can conclude that the

results are mildly sensitive to the prior selected.

Mean 2.5% 97.5%
Beta(1,1) 0.935 0.892 0.967
Beta(2,2) 0.930 0.886 0.964
Beta(5,5) 0.916 0.867 0.953
Beta(5,2) 0.916 0.867 0.953
Beta(2,5) 0.930 0.886 0.964

Figure 2: Bayesian analysis of vaccine efficacy, with different priors

Our efficacy results using our pre-selected prior had a mean of .935, with a credible set (.892,

.967). Thus, we can say that we are 95% confident that the efficacy of the vaccine falls within

that set, given the prior. Now, we will visualize the five distributions of the Monte Carlo samples.

It can be seen that a couple priors have close resulting distributions, but that there are slight

differences throughout the collective group.
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Figure 3: Visualizations of the five monte carlo sampling result distributions

Hypothesis Test:

prior
Beta(1,1)
Beta(2.2)

L] setaiz)
[ setas2)

Beta(5,5)

Our goal is to test whether the efficacy was greater than .70. To do this, the mean of the

Monte Carlo sample distribution above .70 will be calculated, and if this value is .95 or higher,

we can conclude statistically that the vaccine has at least a .70 efficacy. This value, when



calculated, is ~1. This lines up with Figure 3, as in that plot, there appears to be very little of the
distribution at .8, let alone .7. A value of ~1 can lead us to conclude that we are nearly 100%
confident that the vaccine’s efficacy is above .70. This result is not sensitive to our prior, as all
five versions hold the same value of ~1, as can be seen in Figure 3 as well.

Subgroup Analysis:

Next, analysis will be done on the two different subgroups: patients that are white and
patients that come from communities of color. Similar to what was done for all patients, the
same posterior distribution was computed with modified N and 6 values being inputted to match
each group’s statistics. Then Monte Carlo sampling was done to build a sampling distribution.

This visualization and analysis are shown below in Figure 4 and Figure 5.

Mean 2.50%; 07.504
White 0.924 08705187 09630342
Communities of Color 0.951 08532289 09943021

Figure 4: The Bayesian analysis of vaccine efficacy, split by group
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Figure 5: Visualization of sampling distribution for vaccine efficacy, split by group

It can be seen that the vaccine had a higher efficacy on communities of color by nearly .03. To
test if this difference is significant, we will compute the mean of the communities of color Monte
Carlo sample that is greater than the Monte Carlo sample of white patients. This value is
.77047, and since this is not greater than .95, we cannot say that the vaccine’s efficacy on

communities of color is statistically greater than white patients.



Code:

# Cole Adams Midterm Exam
# ST440
set.seed(2)

#Problem Set-Up
pplaceboall <- 14073
pplacebowhite < 8916
pplaceboCol <- 5132

[F=N- I N WV I SV

10 1iplaceboAll <- 185
11 iplacebowhite <- 144
12 iplaceboCol <- 41

14 pvaccineAll <- 14134
15 pvaccinewhite <- 9023
16 pvaccineCol <- 5088

18 qvaccineall =- 11
19 dvaccinewhite <- 10
20 dvaccineCol =<- 1

22 #Efficacy Check for Later

24 ETotal <- 1 - ((ivaccineAll / pvaccineall) / (iplaceboAll / pplaceboAll))
25 Ewhite <- 1 - ((ivaccineWhite / pvaccinewhite) / (iplacebowhite / pplaceboWwhite))
26 ECol <-1 - ((ivaccineCol / pvaccineCol) / (iplaceboCol / pplaceboCol))

28 #Distribution for Priors/ Posteriors
29 theta <- seq(0,1,.0001)

31 #Alpha / Betas for Prior
32 al<-1
33 bl<-1

35 a2 <« 2
36 b2 <- 2
37 a3 <=5

39 b3 «-5

41 a4 <- 5
42 b4 <- 2

44 a5 «<- 2
45 b5 <- 5

47 #Beta Prior
48 betaPrior<- dbeta(theta, al, bl)

52 #Posterior for Vaccine and Placebo
53 posteriorPlaceboAll <- dbeta(theta,al + iplaceboAll,pplaceboAll - iplaceboAll + bl)
54 posteriorvaccineAll <- dbeta(theta,al + ivaccineAll,pvaccineall - ivaccineAll + bl)

56 #Plotting (use for #2)

57 plot(Na, type = "1", x1im = €(0,.03), ylim = c(0, 500), xlab=expression(theta), ylab = "PDF", main = "Beta Distributions")
58 Tlines(theta,betaPrior)

59 Tlines(theta, posteriorPlaceboAll, col = "Blue")
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64  #3)

65 MC <- 100000

66 ppMC <- rbeta(MC,al + iplaceboAll,pplaceboAll - iplaceboAll + bl)
67 pwiC <- rbeta(MC,al + ivaccineAll,pvaccineAll - ivaccineAll + bl)

69 ppMC2 <- rbeta(MC,a2 + iplaceboAll,pplaceboAll - iplaceboall + b2)
70 pwMC2 <- rbeta(MC,a2 + ivaccineAll,pvaccineAll - ivaccineAll + b2)

72 ppMC3 <- rbeta(MC,a3 + iplaceboaAll,pplaceboall - iplaceboall + b3)
73 pwiC3 =- rbeta(MC,a3 + ivaccineAll,pvaccineAll - ivaccineAll + b3)

75 ppMC4 <- rbeta(MC,ad4 + iplaceboAll,pplaceboAll - iplaceboAll + bd)
76 pwiC4 <- rbeta(MC,a4 + ivaccineAll,pvaccineAll - ivaccineAll + b4d)

78 ppMC5 <- rbeta(MC,a5 + iplaceboAll,pplaceboAll - iplaceboAll + b5)
79 pwMC5 <- rbeta(MC,a5 + ivaccineAll,pvaccineAll - ivaccineAll + b5)

81 effl < (1 - pwcC / ppuC)
82 eff? « (1 - pwC2 / ppMC2)
83 eff3 <« (1 - pwC3 / ppMC3)

84 effd <- (1 - pwc4 / ppMCc4)
85 eff5 < (1 - pwC5 / ppMC5)
86

87 meansAll <- rbind(round(mean(effl),3), round(mean(eff2),3), round(mean(eff3),3), round(mean(effd),3), round(mean(effs),3))

88 rownames (meansAll) <- c("Beta(1,1)", "Beta(2,2)", "Beta(5,5)", "Beta(5,2)", "Beta(2,5)™)

89 colnames(meansAll) <- "Mean"

90 quantileAll <- rbind(round(quantile(effl,c(0.025,0.975)),3), round(quantile(eff2,c(0.025,0.975)),3), round(quantile(eff3,c(0.025,0.975)),3), round(c

92 finalAll <- chind(meansAll, quantileAll)

94 finalAll %%
95 kb1() %%
96 kable_classic(full_width = F, html_font = "Cambria™)

98 #3 Plots:
99 df <- data.frame(prior=factor(rep(c("Beta(1,1)", "Beta(2,2)", "Beta(5,5)", "Beta(5,2)", "Beta(2,5)"), each=100000)), Efficacy = c(effl,eff2, eff3, eft
00 ggplot(df, aes(x = Efficacy, color = prior)) + geom_density(alpha = 0.5, size = 1.5)
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05 #4)

06 mean(effl >
07 mean(eff2 > .7
08 mean(eff3 = .7)
09 mean(effd >

10 mean(eff5 =

103 ~ ZF#AHEEEREE

104

105 #4)

106 mean(effl » .7)
107 mean(eff2 = .7)
108 mean(eff3 =~ .7)
109 mean(effd = .7)
110 mean(eff5 = .7)
111

112 #5)

113 ppMCwhite <- rbeta(MC,al + iplacebowhite,pplacebowhite - iplacebowhite + bl)
114 pwMCwhite <- rbeta(MC,al + ivaccinewhite,pvaccinewWhite - ivaccinewhite + bl1)
115

116 effwhite <- (1 - pwicCwhite / ppMCwhite)

117

118 meanwhite <- round(mean(effwhite),3)

119 quantwhite <- quantile(effwhite,c(0.025,0.975),3)

120

121 ppMCCol <- rbeta(MC,al + iplaceboCol,pplaceboCol - iplaceboCol + hl)

122 pwMCCol <- rbeta(MC,al + ivaccineCol,pvaccineCol - ivaccineCol + bl)

123

124 effCol <- (1 - pwMCCol / ppMCCol)

125

126 meanCol <- round(mean(effCol),3)

127 quantCol <- quantile(effCol,c(0.025,0.975),3)

128

129 meanDiff <- rbind(meanwhite, meanCol)

130 quantDiff <- rbind(quantwhite, quantCol)

131

132 finalpiff <- cbind(rbind(meanwhite, meanCol), rbind(quantwhite, quantCol))
133 colnames(finalDiff)[1] <- "Mean"

134 rownames(finalDiff) <- c("white", "Communities of Color™)

135

136

137 finalpiff %%

138 kb1() %%

139 kable_classic(full_width = F, html_font = "Cambria")

140

141 mean(effCol > effwhite)

142

143 df2 <- data.frame(Group=factor(rep(c("white", "Communities of Color"), each=100000)), Efficacy = c(effWhite,effCol))
144 ggplot(df2, aes(x = Efficacy, fill = Group)) + geom_density(alpha = 0.5, size = 1) + x1im(.8,1)
145



