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Introduction

Nike released a new pair of shoes, the vaporfly, to improve distance running performance.

Marathon times of professional runners with and without the shoes were compiled from 2016-2019

for several different races. This data will be used to evaluate the effect on marathon time of wearing

the vaporfly shoes and whether that improvement varies with gender, runner, or course.

Models

Linear models were used with an intercept, one covariate being whether or not vaporfly shoes

were worn, and a model variance. Each course is defined by an index that is unique for every race

name (ci) and each runner is also given a label (ri). Yi represents the marathon time in minutes

for the ith data entry. Xi is the indicator for whether the Vaporfly shoes were worn in the ith

data entry. Different years are not considered to be different courses. In the analysis, data for

men and women are analyzed separately for all models. There are 270 women runners, 578 men

runners, and 23 total courses. This is done to simplify the analysis and because men and women

have clearly different intercepts and slopes as well as to avoid any compound effect of a participant

as a woman/man and an individual.

1) Model 1

Both the slope and the intercept are treated as fixed effects that are the same for every runner and

course, but separated as two different models by gender.

Yi ∼ Normal(b0 + b1Xi, σ
2)

Uninformative priors are used, which are set as: b0 ∼ Normal(0, 1000), b1 ∼ Normal(0, 1000),
σ ∼ Half-Cauchy.

2) Model 2

The slopes are fixed and equal for all participants and courses. The intercepts are treated as mixed

effects with random effects for the participant number and course number.

Yi ∼ Normal(b0 + b1Xi +Ari + Cci, σ
2)

The random effects are defined as:

Ari = random effect on intercept for runner of ith entry, Ar ∼ Normal(µA, σ
2
A)

Cci = random effect on intercept for course of ith entry, Cc ∼ Normal(µC , σ
2
C).
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The priors for b0 and b1 are defined the same as in Model 1 with the exception that information

from the vaporfly paper was given to the b0 prior by setting the prior mean to 160 for women and

140 for men. Priors for the additional parameter are µA, µC ∼ Normal(0, 1), σA, σC ∼ Half-Cauchy.

3) Model 3

The third model allows the slope to vary based on the participant and the course run of the data

entry. The intercepts remain the same as Model 2.

Yi ∼ Normal(b0 + slopei ∗Xi +Ari + Cci, σ
2)

slopei = b1 + bri + bci

The priors are the same as Model 2. The component bri allows the value of the slope to change for

each runner and bci allows the slope to change with a given course with bri , bci ∼ N(0, 100).

4)Model 4

Independent random effects are incorporated into the slope and intercept based on course and

runner groups.

Yi ∼ Normal(b0 + slopei ∗Xi +Ari + Cci, σ
2)

slopei = b1 + bri + bci

The random effects are defined as br ∼ Normal(µ1, σ
2
1), br ∼ Normal(µ2, σ

2
2). The priors for these

new parameters are µ1, µ1 ∼ Normal() and σ1, σ2 ∼ Half-Cauchy.

5) Model 5

The final model treats both the slopes and the intercepts as correlated random effects with separate

parameters for the runner effect and the course effect. An interaction term for the course and runner

indices is added.

Yi ∼ Normal(αi,1 + αi,2 ∗Xi, σ
2)

αi,j = α1r(i),j + α2c(i),j + α12r(i),c(i),j

α1i ∼ Normal(B1,Ω1), α2i ∼ Normal(B2,Ω2), α12i ∼ Normal(B12,Ω12)

The vectors αi,B and the matrix Ω all have entries for (1)intercept and (2)slope. The priors

for the means and covariances of α1, α2, and α12 are set as: B[1] ∼ Normal(50, 100), B[2] ∼
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Normal(-5, 100), Ω ∼ InvWishart(2.1, I2/2.1). Slightly more informative priors with mean values

approximated from the paper results and tighter variances are used to help improve convergence.

The Inverse Wishart prior parameters were selected to set the variances at 1 and the correlations

at 0.

Computation

JAGS was used to perform the MCMC computation in R. 100,000 iterations were run for each

model with 50,000 burnin. The convergence of the models was determined by examining some

of the parameter traceplots and checking the effective sample size. The effective sample sizes for

investigated parameters of all models were all above 1000, and so it can be said that convergence

was achieved. However, the convergence of Model 5 was notably worse than that of models 1-4.

Model Comparison

The models for the women were compared using the Deviance Information Criteria command

(DIC), which are reported in Table 1. Based on the DIC results, the selected model to use is

Model 5. While this model was the most complicated with the highest penalty, its overall DIC

was noticeably lower than the others. However, with the exception of the simplest Model 1, the

DIC comparison values were all fairly close together. Nonetheless, Model 5 was still selected as the

model to use for women and, consequently, also men as the comparison results are expected to be

similar for both genders.

Table 1: DIC results for models

Results

By applying Model 5, it was found that the vaporfly shoes improve marathon performance for

both men and women. The posterior samples of the mean slopes of all the course and runner fits

are centered around negative values with only the tails reaching positive values (Figures 1 and 2),

suggesting that the vaporflies improve marathon time. The mean of the posterior distribution of the

3



mean slope values were found to be different for both men and women (see Table 2). By examining

the posterior mean of the runner contribution to the slope random effects for each fit (Fig.3), it was

found that the effect varies greatly by runner: zero slopes for participants that never wore vaporfly

shoes, positive values for runners with worse performances in the shoes, and negative results for

those that improved. The posterior distributions for the course component of the random effect

of slope do not exhibit much difference between courses (Fig. 4). It can be concluded that the

vaporfly effect, though negative overall, varies greatly by individual runner and gender, but is not

significantly impacted by the course.

Table 2: Means and credible intervals for mean slopes and intercepts from all fits.

Figure 1: Women posterior mean slopes. Figure 2: Men posterior mean slopes.

Figure 3: Male runner effect means. Figure 4: Course effect male posteriors.
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# Model 5: Men 

# Random effects: course + participant, with interaction 

 

data <- list(Y=Y, X=X, n=n, c=c, r=r, course=course.men, run_num=number.men) 

burn     <- 50000 

n.iter   <- 100000 

n.chains <- 2 

params <- c("mu1", "mu2", "mu12", "Omega1", "Omega2", "Omega12", "mean_slope", "mean_intercept") 

 

model_string <- textConnection("model{ 

  # Likelihood 

  for(i in 1:n){ 

    Y[i] ~ dnorm(alpha[i,1] + alpha[i,2]*X[i], taue) } 

  # Random Effects 

  for (jj in 1:n){ 

    alpha[jj,1:2] <- alpha1[run_num[jj], 1:2] + alpha2[course[jj], 1:2] + alpha12[run_num[jj], course[jj], 1:2] } 

  for(kk in 1:r){ 

    alpha1[kk, 1:2] ~ dmnorm(mu1[1:2], Omega1[1:2,1:2]) } 

  for(ii in 1:c){ 

    alpha2[ii, 1:2] ~ dmnorm(mu2[1:2], Omega2[1:2,1:2])} 

  for(qq in 1:r){ 

    for(pp in 1:c){ 

      alpha12[qq, pp, 1:2] ~ dmnorm(mu12[1:2], Omega12[1:2,1:2])}} 

  # output mean slope of all entries for every iteration 

  mean_slope <- mean(alpha1[,2]) + mean(alpha2[,2]) + mean(alpha12[,,2]) 

  mean_intercept <- mean(alpha1[,1]) + mean(alpha2[,1]) + mean(alpha12[,,1]) 

  # Priors 

  #for(j in 1:2){mu1[j] ~ dnorm(0, 0.1)} 

  #for(j in 1:2){mu2[j] ~ dnorm(0, 0.1)} 

  #for(j in 1:2){mu12[j] ~ dnorm(0, 0.1)} 

  mu1[1] ~ dnorm(50,0.01) 

  mu2[1] ~ dnorm(50,0.01) 

  mu12[1] ~ dnorm(50,0.01) 

  mu1[2] ~ dnorm(-5,0.01) 

  mu2[2] ~ dnorm(-5,0.01) 

  mu12[2] ~ dnorm(-5,0.01) 

  Omega1[1:2,1:2] ~ dwish(R[,], 2.1) 

  Omega2[1:2,1:2] ~ dwish(R[,], 2.1) 

  Omega12[1:2,1:2] ~ dwish(R[,], 2.1) 

  taue <- pow(sigmae, -2) # Half cauchy priors on sd 

  sigmae ~ dt(0,1,1)T(0,)  

  R[1,1]<-1/2.1 

  R[1,2]<-0 

  R[2,1]<-0 

  R[2,2]<-1/2.1 }") 

 

model <- jags.model(model_string,data = data, n.chains=n.chains,quiet=TRUE) 

update(model, burn, progress.bar="none") 

samples5.men <- coda.samples(model, variable.names=params, n.iter=n.iter, progress.bar="none") 


