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ST 540 Exam 2, Hemant Kumar, April 16, 2018 

 

1. Introduction 

The number of tropical storms that make landfall on US Atlantic Coast is related to the sea 

surface temperatures in the six months preceding the hurricane season. This paper identifies the 

locations and months which are most predictive of number of storms. 

2. Methods 

The response variable (number of storms) is a non-negative discrete random variable and Poisson 

distribution was chosen to calculate the data likelihood. Further uninformative priors have been 

used for the predictors since no information on predictive power of any given location or month 

is available a priori.  

The following Bayesian model with 60 predictors has been used.  

𝑌𝑖  : Number of storms in the ith year where 𝑖 =  1, 2, … ,50.  

𝑌𝑖  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖 = exp(𝛼 + 𝛽1𝑋𝑖1 +  𝛽2𝑋𝑖2 + ⋯ + 𝛽60𝑋𝑖60))  

𝛽𝑗 = 𝛾𝑗 × 𝛿𝑗;  𝛾𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑞); 𝛿𝑗~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2);  𝛼~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2); 

𝑞~𝐵𝑒𝑡𝑎(1,1);  𝜎2~𝐼𝑛𝐺𝑎𝑚𝑚𝑎(0.1,0.1);  

𝑌𝑖 ∈ ℕ ∪ {0};  𝛼, 𝛽𝑗 , 𝛿𝑗 , 𝑋𝑖𝑗 ∈ ℝ;  𝑞 ∈ [0,1]; 𝛾𝑗 ∈ {0,1};  𝜆𝑖 > 0;  𝑗 = 1,2, … ,60 

The 𝛾𝑖 variable works as an identifier to include/exclude predictors.  

The model probabilities have been compared to choose the most important predictors. Further, 

the effect of prior on selection of these predictors has been studied using two additional priors: 

𝐵𝑒𝑡𝑎(2,1) and 𝐵𝑒𝑡𝑎(1,10) for 𝑞. 

Notation: The location (l) is referred to as 1, 2… 10 based on the S variable of provided dataset. 

The months (m) have been referred to as 1, 2… 6 based on the X variable of supplied dataset. 

Thus, l8.m3 refers to 3rd month of 8th location (x = 2, y = 1).  
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3. Computation 

The model was fitted in R using the rjags package. The jags 

model code is given in the appendix. The models were run with 

following specifications: burn = 10000, 3 chains, 100000 

iterations per chain, and no thinning. The model successfully 

converged for all three priors as judged from trace plots (see 

Figure 1 for representation). Most of the predictor coefficients 

have spike-and-slab histograms. 

 

 

Figure 1: Trace plot of coefficient (βj) of 2nd 
month of location 7 (x =1, y=1) using 
Beta(1,1) prior. 

4. Model comparisons 

The decision to which variables should be included in the model was based on calculating model 

probabilities. First, the predictors with inclusion probability higher than 0.5 were identified (see 

Table 1). Then the model probabilities were obtained by calculating the fraction of a given model’s 

presence in the drawn samples (based on the example Dr. Reich’s example using Gambia data1) 

with a minor difference. The current problem has 60 predictors and resulting in very large number 

of combinations of models. I just looked at the combinations of predictors with inclusion 

probability greater than 0.5 to reduce number of combinations (see Table 2). 

 

Four predictors amongst total 60 have inclusion probability more 

than 0.5. As can be seen in Table 1, 4th month of 10th location (x=4, 

y=1) [l10.m4] has inclusion probability nearly one and is clearly the 

most important predictor. 5th month of 8th location (x=4, y=1) 

[l8.m5] is the next important predictor. 6th month of location 9 

(x=3, y=1) [l9.m6] and 2nd month of location 7 (x=1, y=1) [l7.m2] 

are the other two important predictors but their importance has to 

be gauged from model probabilities. 

Table 1: Inclusion probability for βj for 3 
different priors. Only cases with inclusion 
probability more than 0.5 have been shown. 

Predictor 
Prior : 𝑞~𝐵𝑒𝑡𝑎(𝑎, 𝑏) 

(1,1) (2,1) (1,10) 

l10.m4 0.999 0.999 1 

l8.m5 0.923 0.906 0.952 

l9.m6 0.838 0.834 0.884 

l7.m2 0.738 0.711 0.775 

 

                                         
1 Variable selection for the Gambia data (https://www4.stat.ncsu.edu/~reich/BSMdata/SSVS.html) 

https://www4.stat.ncsu.edu/~reich/BSMdata/SSVS.html
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Table 2 gives the comparison of models 

with different set of predictors and shows 

that the model with l7.m2, l8.m5, l9.m6 & 

l10.m4 occurs most often followed by 

model with l8.m5, l9.m6 & l10.m4. It 

becomes clear that l9.m6 and l10.m4 have 

to be included in the model while inclusion 

of l7.m2 and l8.m5 is not so clear which 

agrees with observation made in Table 1. 

Table 2: Model probabilities of models with different predictor sets for 
three different priors. 

 

ID Predictors 
Prior : 𝑞~𝐵𝑒𝑡𝑎(𝑎, 𝑏) 

(1,1) (2,1) (1,10) 

A Intercept, l7.m2, l8.m5, 

l9.m6, l10.m4 
0.579 0.552 0.664 

B Intercept, l8.m5, l9.m6, 

l10.m4 
0.217 0.230 0.193 

C Intercept, l7.m2, l8.m5, 

l10.m4 
0.122 0.119 0.091 

D Intercept, l9.m6, l10.m4 0.032 0.040 0.021 

 

5. Results 

Bayesian approach has been used to identify the most important predictors for number of annual 

storms. The model successfully converges for all three priors and is not very sensitive to prior. 

Predictors: l10.m4, l8.m5, l9.m6, and l7.m2 are the most important predictors in decreasing order 

of importance (see Methods for notation). Further, the model with all these four predictors has 

the highest model probability and this does not depend on priors. The number of storms if 

positively correlated with the four selected predictors (note the positive value of median of 

coefficients in Figure 2).  

Figure 2: Coefficient quantiles (90% credible interval, median) and inclusion probability of predictors with Beta(1,1) 
prior. Each subpanel denotes a location indicated by the text label. Each subpanel has 6 months starting from 1st month 
on the left to 6th on the right. For example, the rightmost panel represents 10th location and the 4th month has inclusion 
probability greater than 0.9 (shown with filled square). 
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The final model with all important predictors with Beta(1,1) prior is: 

𝑌𝑖 =  2.331 +  0.205 ∗ 𝑙7. 𝑚2 + 0.305 ∗ l8. m5 +   0.232 ∗ l9. m6 +   0.411 ∗ l10. m4  

It may appear that 3rd month of 9th location [l9.m3] is unjustly left out despite having a strong 

negative coefficient along with few others (Figure 2). However, l9.m3 has a very strong spike in 

in its histogram at 0 and hence it inclusion probability is less than 0.5 and many other predictors 

also show this behavior. It should be noted that the selected predictors have non-zero median 

unlike l9.m3.  

 

6. Prediction 

The four models given in Table 2 have been used 

to predict the expected value of number of 

storms in 50th year. Using the model from 

equation given in results section, the estimated 

number of storm is 14.57 with 95% CI of [9.97, 

18.15]. 

We can note from Figure 3 that effect of prior is 

minimal on model prediction but that of model 

is impactful. Also, the predicted value by models 

A & B [14.57 & 14.81 with 1st prior: Beta(1,1)] is 

drastically different from that of models C & D 

[10.14 & 10.80 with 1st prior: Beta(1,1)]. This is 

perhaps due to absence of predictor important 

l8.m5 in models C and D. 

Figure 3: Estimate of number of storms in 50th year 

(𝐸[𝑌50]̂ ) using 4 different models (A, B, C, D) and 3 
different priors (1, 2, 3). The filled circles show the 
median value and solid and dotted bars show 50% and 

95% CI respectively. Priors: 𝑞~𝐵𝑒𝑡𝑎(𝑎, 𝑏) where 1: 
(1,1), 2: (2,1), 3: (1,10). See Table 2 for definitions of 
A, B, C, D. 
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Appendix 

 

Notation: n = 49 (number of years for which data is available); p=60 (number of predictors: 10 

locations and 6 months); Y: response variable; X: predictor matrix 

Prior 1 

library("rjags") 

n.chains = 3; burn = 10000; n.iter = 10*burn; 

data = list(X = SST, n = nrow(SST), Y = Y, p = ncol(SST)) 

model_str = textConnection("model{ 

                             # Likelihood 

                             for (i in 1:n){ 

                             Y[i] ~ dpois(lamb[i]) 

                             log(lamb[i])=alpha+ inprod(X[i,],beta[])} 

 

                             # Priors 

                             for (j in 1:p){ 

                             beta[j] = gamma[j]*delta[j] 

                             gamma[j] ~ dbern(q) 

                             delta[j] ~ dnorm(0,taue)    } 

 

                             alpha ~ dnorm(0, taue) 

                             q ~ dbeta (1,1) 

                             taue ~ dgamma(0.1,0.1) 

                             }") 

 

model = jags.model(model_str, data = data, n.chains = n.chains) 

update(model, burn) 

params = c("alpha","beta","gamma","q","delta","taue") 

samples_2 <- coda.samples(model, variable.names=params,n.iter=n.iter) 

 

Prior 2:  

q ~ dbeta (2,1) 

 

Prior 3 

q ~ dbeta (1,10) 

 

 

 

Software used: RStudio 1.1.463; R 3.5.1; Package rjags version 4-8 


