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Introduction 

 Tropical storms can be detrimental to towns and the people who live in them. Being able to 

predict the number of tropical storms that make landfall on the US Atlantic Coast would help towns and 

people prepare and reduce the amount of damage these storms can cause. To predict the number of 

tropical storms that make landfall, sea surface temperatures are taken six times throughout the year at ten 

different locations. Our goal is to identify when and where sea surface temperatures are the most 

predictive of the number of tropical storms that hit the US Atlantic Coast. 

Methods and Computations 

 I will compare three different models, each using a Bayesian Poisson Regression. The dependent 

variable—number of tropical storms that hit the US Atlantic Coast—is a count variable and thus not 

normally distributed, which is why I used a Poisson regression. Each model follows the same general 

format—Yi ~ Poisson(li) and log(li) = g + X1i a1 + … + Xni an—where Xni are the covariates, an are the 

regression coefficients, and g is the intercept. I will use uninformative priors for g and the as ~ Normal(0, 

0.1). 

Model Comparisons 

 Three Bayesian Poisson regressions and three Maximum Likelihood Estimation regressions will 

be compared. The Bayesian Poisson regressions are described here. The first model takes the average sea 

surface temperature across all months and locations and uses these averages to predict the number of 

tropical storms: Yi ~ Poisson(li) and log(li) = g + X"i a. The second model looks at how the monthly 

average (i.e., average for each month across all ten locations) is associated with the number of tropical 

storms: Yi ~ Poisson(li) and log(li) = g + M1i a1 + … + M6ia6. The third model uses the average sea 

surface temperature by location (i.e., average for each location across all six months) to predict the 

number of tropical storms: Yi ~ Poisson(li) and log(li) = g + L1i a1 + … + L10ia10
. 



 To compare the Bayesian models the Watanabe-Akaike information criteria (WAIC) will be used. 

I chose to use WAIC over the Bayesian information criteria (BIC) because the three models do not have 

the same likelihood. In addition to WAIC, posterior predictive checks were run to determine Bayesian p-

values. Although no formal comparison between the MLE and Bayesian models were conducted, both 

were run to see if the same covariates were statistically significantly associated with the number of 

tropical storms. 

Results 

Model One 

 The MLE determined that the average sea surface temperature across all months and locations 

was a statistically significant predictor of the number of tropical storms (b = 1.454, p < .001). The 

Bayesian Poisson regression for this model converged and also indicated that the average sea surface 

temperature was statistically significant (a = 1.453, 95% credible set [1.212, 1.694]). 

Model Two 

 Looking at the monthly average sea surface temperature, the MLE model indicated that three 

months were statistically significantly associated with the number of tropical storms that year—Month 2 

(b = 0.769, p = .005), Month 4 (b = 0.782, p = .003), and Month 6 (b = 0.535, p = .010). The same months 

were found to be statistically significant in the Bayesian Poisson as well—Month 2 (a = 0.764, 95% 

credible set [0.228, 1.307]), Month 4 (a = 0.772, 95% credible set [0.248, 1.297]), Month 6 (a = 0.532, 

95% credible set [0.121, 0.937]). On average, higher temperatures in these months resulted in more 

storms that year. 

Model Three 

 Model three looked at the average sea surface temperature for the ten locations. Half of the 

locations were statistically significantly associated with the number of tropical storms in both the MLE 

and the Bayesian Poisson regression. When temperatures were higher at Location 3 (b = 0.253, p = .001; 

a = 0.256, 95% credible set [0.107, 0.401]), Location 7 (b = 0.300, p < .001; a = 0.302, 95% credible set 



[0.182, 0.424]), Location 9 (b = 0.338, p < .001; a = 0.339, 95% credible set [0.218, 0.460]), and 

Location 10 (b = 0.450, p < .001; a = 0.451, 95% credible set [0.344, 0.558]), that year had more tropical 

storms land on average than when temperatures were lower in those locations. Conversely, on average, 

when temperatures were low at Location 4, there were more tropical storms (b = -0.199, p = .017; a = -

0.200, 95% credible set [-0.367, -0.035]). 

Model Comparisons 

When using WAIC to compare models, the lower the WAIC, the better the model fit. Model One 

had a WAIC of 420, Model Two had a WAIC of 436, and Model Three had a WAIC of 373. Therefore, 

Model Three was the best fitting model for the data, whereas Model Two was the worst fitting model.  
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The above figure contains the plots for the posterior predictive checks and the Bayesian p-values. From 

these, we can confirm that Model Three is the best fitting of the three models because its Bayesian p-

values are closest to .50. That being said, it does not appear to be a great model, especially for the smaller 

values of Y (the number of tropical storms).  

Prediction 

 As we can see in the figure below, none of the models were particularly accurate in predicting the 

number of tropical storms that landed per year. All models’ residuals appear to be heteroscedastic and 

non-linear. 
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###Model 1### 
poisson_model1 <- "model{ 
#Likelihood 
for(i in 1:n){ 
Y[i] ~ dpois(lambda[i]) 
log(lambda[i]) <- gamma + beta*X[i] 
} 
#Priors 
gamma ~dnorm(0,.1) 
beta ~dnorm(0,.1) 
#WAIC calculations 
for(i in 1:n){ 
like1[i] <- dpois(Y[i],lambda[i]) 
} 
#Posterior preditive checks 
  for(i in 1:n){ 
Y1_pred[i]    ~ dpois(lambda[i]) 
} 
D1[1] <- min(Y1_pred[]) 
D1[2] <- max(Y1_pred[]) 
D1[3] <- max(Y1_pred[])-min(Y1_pred[]) 
}" 
 
dat1 <- list(Y=Y, n=n, X=averages) 
model1 <- jags.model(textConnection(poisson_model1),data = dat1,n.chains=3) 
update(model1, 10000) 
samp1 <- coda.samples(model1,  
                     variable.names=c("gamma","beta"),  
                     n.iter=20000) 
waic1   <- coda.samples(model1,  
                        variable.names=c("like1"),  
                        n.iter=20000, progress.bar="none") 
like1   <- waic1[[1]] 
fbar1   <- colMeans(like1) 
Pw1     <- sum(apply(log(like1),2,var)) 
WAIC1   <- -2*sum(log(fbar1))+2*Pw1 
D1 <- coda.samples(model1,  
                   variable.names=c("D1"),  
                   n.iter=20000) 
D1 <- D1[[1]] 
 
###Model 2### 
fulldata <- as.data.frame(melt(X)) 
colnames(fulldata)<-c("Month", "Location", "Year", "SST") 
ave_month <- spread(fulldata, Month, SST) 
ave_month <- aggregate(ave_month, by=list(ave_month$Year), FUN=mean) 
Month <- as.matrix(ave_month[,4:9]) 
 
poisson_model2 <- "model{ 
# Likelihood 
for(i in 1:n){ 



Y[i] ~ dpois(lambda[i]) 
log(lambda[i]) <- gamma + alpha[1]*Month[i,1] + alpha[2]*Month[i,2] +  alpha[3]*Month[i,3] +  

alpha[4]*Month[i,4] + alpha[5]*Month[i,5] + alpha[6]*Month[i,6] 
like[i] <- dbin(Y[i],lambda[i],1) 
} 
#Priors 
gamma ~dnorm(0,.1) 
for(j in 1:6){ 
    alpha[j] ~ dnorm(0,0.1) 
} 
#WAIC calculations 
for(i in 1:n){ 
like2[i] <- dpois(Y[i],lambda[i]) 
} 
#Posterior preditive checks 
  for(i in 1:n){ 
Y2_pred[i]    ~ dpois(lambda[i]) 
} 
D2[1] <- min(Y2_pred[]) 
D2[2] <- max(Y2_pred[]) 
D2[3] <- max(Y2_pred[])-min(Y2_pred[]) 
}" 
dat2 <- list(Y=Y, Month=Month, n=n) 
model2 <- jags.model(textConnection(poisson_model2),data = dat2,n.chains=3) 
update(model2, 10000) 
samp2 <- coda.samples(model2,  
                     variable.names=c("gamma","alpha"),  
                     n.iter=20000) 
waic2   <- coda.samples(model2,  
                        variable.names=c("like2"),  
                        n.iter=20000, progress.bar="none") 
like2   <- waic2[[1]] 
fbar2   <- colMeans(like2) 
Pw2     <- sum(apply(log(like2),2,var)) 
WAIC2   <- -2*sum(log(fbar2))+2*Pw2 
D2 <- coda.samples(model2,  
                   variable.names=c("D2"),  
                   n.iter=20000) 
D2 <- D2[[1]] 
 
###Model 3### 
ave_loc <- spread(fulldata, Location, SST) 
ave_loc <- aggregate(ave_loc, by=list(ave_loc$Year), FUN=mean) 
Location <- as.matrix(ave_loc[,4:13]) 
poisson_model3 <- "model{ 
# Likelihood 
for(i in 1:n){ 
Y[i] ~ dpois(lambda[i]) 
log(lambda[i]) <- gamma + alpha[1]*Location[i,1] + alpha[2]*Location[i,2] +              

alpha[3]*Location[i,3] + alpha[4]*Location[i,4] + alpha[5]*Location[i,5] + 



alpha[6]*Location[i,6] + alpha[7]*Location[i,7] + alpha[8]*Location[i,8] + 
alpha[9]*Location[i,9] + alpha[10]*Location[i,10] 

like[i] <- dbin(Y[i],lambda[i],1) 
} 
#Priors 
gamma ~dnorm(0,.1) 
for(j in 1:10){ 
alpha[j] ~ dnorm(0,0.1) 
} 
#WAIC calculations 
for(i in 1:n){ 
like3[i] <- dpois(Y[i],lambda[i]) 
} 
#Posterior preditive checks 
  for(i in 1:n){ 
Y3_pred[i]    ~ dpois(lambda[i]) 
} 
D3[1] <- min(Y3_pred[]) 
D3[2] <- max(Y3_pred[]) 
D3[3] <- max(Y3_pred[])-min(Y3_pred[]) 
}" 
dat3 <- list(Y=Y, Location=Location, n=n) 
model3 <- jags.model(textConnection(poisson_model3),data = dat3,n.chains=3) 
update(model3, 10000) 
samp3 <- coda.samples(model3,  
                     variable.names=c("gamma","alpha"),  
                     n.iter=20000) 
 
waic3   <- coda.samples(model3,  
                        variable.names=c("like3"),  
                        n.iter=20000, progress.bar="none") 
like3   <- waic3[[1]] 
fbar3   <- colMeans(like3) 
Pw3     <- sum(apply(log(like3),2,var)) 
WAIC3   <- -2*sum(log(fbar3))+2*Pw3 
D3 <- coda.samples(model3,  
                   variable.names=c("D3"),  
                   n.iter=20000) 
D3 <- D3[[1]] 
  
###Bayesian p-values### 
D0   <- c(3, 55, 52) 
Dnames <- c("Min Y", "Max Y", "Range Y") 
pval1 <- rep(0,3) 
names(pval1)<-Dnames 
pval2 <- pval1 
pval3 <- pval1 
 
for(j in 1:3){ 
  plot(density(D1[,j]), 
       xlab="D",ylab="Posterior probability", 



       main=Dnames[j]) 
  lines(density(D2[,j]),col=2) 
  lines(density(D3[,j]),col=3) 
  abline(v=D0[j],col=4) 
  legend("topleft",c("Average","Month","Location", "Data"),lty=1,col=1:4,bty="n") 
   
  pval1[j] <- mean(D1[,j]>D0[j])  
  pval2[j] <- mean(D2[,j]>D0[j])  
  pval3[j] <- mean(D3[,j]>D0[j])  
} 
 
###Model Predictions### 
beta1 <- samp1[[1]] 
coeff1 <- apply(beta1, 2, mean) 
Yhat1 <- rep(0, 50) 
for(i in 1:n){ 
  Yhat1[i] <- coeff1[1]*averages[i] + coeff1[2] 
} 
Yhat1_e <- exp(Yhat2) 
plot(Y ~ Yhat1_e) 
res1 <- Y – Yhat1_e 
plot(res1 ~ Y) 
 
beta2 <- samp2[[1]] 
coeff2 <- apply(beta2, 2, mean) 
Yhat2 <- rep(0, 50) 
for(i in 1:n){ 
  Yhat2[i] <- coeff2[1]*Month[i,1] + coeff2[2]*Month[i,2] + coeff2[3]*Month[i,3] + 
    coeff2[4]*Month[i,4] + coeff2[5]*Month[i,5] + coeff2[6]*Month[i,6] + coeff2[7] 
} 
Yhat2_e <- exp(Yhat2) 
plot(Y ~ Yhat2_e) 
res2 <- Y - Yhat2_e 
plot(res2 ~ Y) 
 
beta3 <- samp3[[1]] 
coeff3 <- apply(beta3, 2, mean) 
Yhat3 <- rep(0, 50) 
for(i in 1:n){ 
  Yhat3[i] <- coeff3[1]*Location[i,1] + coeff3[2]*Location[i,2] + coeff3[3]*Location[i,3] + 
    coeff3[4]*Location[i,4] + coeff3[5]*Location[i,5] + coeff3[6]*Location[i,6] +  
    coeff3[7]*Location[i,7] + coeff3[8]*Location[i,8] + coeff3[9]*Location[i,9] + 
    coeff3[10]*Location[i,10] + coeff3[11] 
} 
Yhat3_e <- exp(Yhat3) 
plot(Y ~ Yhat3_e) 
res3 <- Y - Yhat3_e 
plot(res3 ~ Y) 
 


