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Introduction

Causal inference is of core importance to the financial markets. If one
could determine the causal structure underlying the price movement
of financial instruments, theoretically they should be able to exploit
any inefficiencies that arise. As evidenced by the recent economic un-
certainty and volatility in the financial markets, these relationships are
almost impossible to infer, which implies even a rudimentary under-
standing of how prices interact can be of great value to investors.

To understand the interconnectedness of the financial markets on a
particular day, we use graphical models to display the underlying struc-
ture of price movements. We use 10 index funds which represent the
economy as a whole, and seek to determine undirected and causal re-
lationships between them. Furthermore, we investigate whether addi-
tional explanatory information is present in the lagged returns of the
10 index funds selected.

Graphical Models

A graph, G, is defined as G = (V,E) where V denotes the number
of vertices, or nodes, in the graph, and E the number of connections,
called edges, between the nodes. These edges can be directed, undi-
rected, or bi-directed. The number of vertices is the number of random
variables in the data set, and the number of edges is determined via
the application of statistical techniques. A few directed relationships
displayed by a graph are:

(i) Chain: X → Y → Z

(ii) Chain: X ← Y ← Z

(iii) Fork: X ← Y → Z

(iv) Collider: X → Y ← Z

Cases (i), (ii) and (iii), imply X |= Z|Y , whereas case (iv) implies
X |= Z without any conditioning. Using these relationships, the joint
distribution of a set of variables can be inferred from a graphical model.

Data

Using the R package quantmod we downloaded data for 10 index
funds (Table 1), representing the underlying US economy from Jan-
uary 2007 to April 2015. We then calculated the log-returns (defined
below) for each fund, and used these to conduct our inference.

log(returns) = log

(
pricet
pricet−1

)
Table 1: List of Index Funds Used

Ticker Industry
1 SPY S&P
2 XLB Materials
3 XLE Energy
4 XLF Financials
5 XLP Consumer Staples
6 XLI Industrials
7 XLU Utilities
8 XLV Healthcare
9 XLK Technology
10 XLY Consumer Discretionary

Methods & Results
Let G = (V,E) be a graph. In our specific situation, we have data for
10 funds; therefore, we have a graph with 10 nodes: G = (10, E). The
number of edges in our graphs will be determined from the methods
that are used.

Method 1: Gibbs Sampling with Log-Returns
We used multiple methods to derive the graphical models presented in
our results section. Our first goal was to create an undirected graph
based on the raw log-returns. The procedure is described below:

•Assume YYY ∼MVN(µµµ,ΣΣΣ).

•Using Gibbs sampling, derive ΣΣΣ and use this to determine the partial
correlation matrix PPP at each iteration.

PPP ij =

 ΣΣΣ−1
ij√

ΣΣΣ−1
ii ΣΣΣ−1

jj


I(i 6=j)

• Create a 95% credible set for each set of partial correlations and if
zero is not in the set, create an edge between the two variables.

– Because this requires 55 tests, we use a Bonferroni correction to
adjust for multiple comparisons.

The results of this method are shown in Figure 1:

1

2

3

4

5

6

7

8

9

10

Figure 1: Undirected Graph For Log-Returns with Bonferroni Correction

Method 2: Using the PC Algorithm with Log-Returns
The graph in Figure 1 shows undirected relationships between the the
funds in our data. However, we are also interested in causal relation-
ships which can be summarized via a Directed Acyclic Graph (DAG).
To do this we use the PC algorithm, the steps for which are outlined
below (Shalizi, 2013):

• Start with a full (saturated) graph.

• For each pair of variables A and B, check if A |= B. If they are,
remove edge connecting A and B.

• For each pair of variables A and B still connected, check if there
exists a variable C, such that A |= B|C. If so, remove edge {A,B}.
• For each pair of variables A and B which remain connected, if there

exists a set of variables DDD = (C1, . . . , Ck) such that A |= B|DDD, re-
move edge {A,B}.

• Continue this procedure until k = p − 2, where p is the number of
total variables.

It can be seen that the PC algorithm is a backward selection proce-
dure from a full graph. The results from using the PC algorithm with
log-returns is shown in Figure 2
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Figure 2: Inferred Causal Graph for Log-Returns

Method 3: Conditioning on Past Returns

Figure 1 and 2 show graphs for raw log-returns of the index funds of
interest. However, we are also interested in determining relationships
between funds after conditioning on past returns. That is, given yes-
terdays returns what additional information can be obtained for returns
today. To do this we regressed each fund’s returns on the previous
day’s returns of all other funds, and the previous five day’s returns for
the fund itself. A mathematical representation of this is given below:

Yit = β0 + βββYYY t−1 + γ1Yi,t−2 + · · · + γ4Yi,t−5 + eit (1)

We then took the residuals generated by these models, and estimated
their covariance matrix using Gibbs sampling. The information con-
tained in the residuals was information not explained by our regression,
and their covariance matrix on a particular day, t, is representative of
the relationships of stock movements on day t conditioned on past re-
turns.
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Figure 3: Undirected Graph For Residuals with Bonferroni Correction
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Figure 4: Inferred Causal Graph for Residuals

Figures 3 and 4 show graphical models generated by using Gibbs
Sampling and the PC algorithm on the residuals of the regression in
Equation 1, respectively. Figure 1 and 3 are exactly the same, im-
plying that the past stock returns provide no additional information
regarding the relationships of today’s returns. However, using the PC
algorithm produces a different graph and changes some of the causal
relationships inferred in Figure 2.

Conclusions
• From Figure 1 and 3 it seems that the consumer staples and health-

care index funds are independent of the movement of the overall
market.
• The DAG’s in Figure 2 and 4 correctly capture the directional rela-

tionship of the impact of index funds on the S&P 500.
• The DAG’s show that conditioned on the returns of the S&P 500,

none of the returns for the index funds are independent.

Caveats
• The Bonferroni correction for the undirected graphs is too conserva-

tive. Decreasing the width of the credible set for the partial correla-
tions leads to much more complicated models.
•An assumption of the PC algorithm is that all relevant variables are

included in the Graph. This is not necessarily the case, as unmea-
sured variables such as economic growth and monetary policy are
not included.
• The normality assumption is not necessarily met. Stock returns tend

to have more extreme returns than the normal distribution allows.
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