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1 Statistical model

I proceeded in two steps to estimate θθθ. The first step is a Bayesian SLR, and the second step is
the expected MCMC.

During my initial data review, I saw Y1,1Y1,1Y1,1 (that is, Y1’s estimate of the first pixel) and Y2Y2Y2 were highly
correlated when they were both non-missing. Their correlation is nearly perfect: it’s 99.6%. In an
effort to improve runtime of the upcoming MCMC code, my first step is to use the non-missing Y1,1Y1,1Y1,1
and Y2Y2Y2 pairs to impute missing values in both samples. I performed this imputation using Bayesian
SLR. I then used this imputed data in the larger, more complicated MCMC.1 To save space, I omit
the model here.2

My main MCMC model attempts to simulate Dr. Reich’s own simulation using the satellite data
as observed data. My philosophy was that Y1Y1Y1 should be trusted highly and that I should account
for noise and a small amount of bias in Y2Y2Y2 and Y3Y3Y3. At a high level, and suppressing the priors and
some of the notation, my model is:

P (θθθ|Y1Y1Y1,Y2Y2Y2,Y3Y3Y3) ∝ P (Y1Y1Y1|θθθ)P (Y2Y2Y2|θ1θ1θ1)P (Y3Y3Y3|
6∑

j=1

θt,jθt,jθt,j/6)

Additional details are in the JAGS code, but the main highlights are:

Y1{i,j} ∼ N(θ{i,j}, σ
2
Y1

) Where σ2Y1
∼ Gamma(3, 0.5)

Y2{i} ∼ N(θ1{i} + bias[Y2], σ
2
Y2

) Where σ2Y2
∼ Gamma(0.1, 0.1)

Y3{i} ∼ N(
6∑

j=1

θ3{i,j}/6 + bias[Y3], σ
2
Y3

) Where σ2Y3
∼ Gamma(0.1, 0.1)

I simulated both biases as uniformly distributed on (-2,2). θθθ is simulated as described in Dr. Reich’s
notes using uninformed priors on ρ, µ1µ1µ1, µ2µ2µ2, Σ1Σ1Σ1, and Σ2Σ2Σ2.

1In an ideal world, I wouldn’t use this step. I realize that as a result of using imputed data, I’m not quantifying
some of the uncertainty in the model for my eventual estimates of θθθ. As a counterpoint, the relationship is almost
perfectly linear, and I know it’s based on simulated data. I ultimately decided under the circumstances the trade-off
in faster MCMC code for debugging and testing was worth it.

2I used uninformed priors identical to those used in HW7. Note that a frequentist SLR yields nearly exactly the
same point estimates.
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2 JAGS code

##### Likelihoods
for(i in 1:n) {

for(j in 1:6) {
Y1[i,j] ˜ dnorm(theta[i,j], Y1_variance)

}
Y2[i] ˜ dnorm(theta[i,1] + Y2_bias, Y2_variance)
Y3[i] ˜ dnorm(1/6*(theta[i,1] + theta[i,2] + theta[i,3] +

theta[i,4] + theta[i,5] + theta[i,6]) + Y3_bias, Y3_variance)
}

##### Theta matrix
theta[1,1:6] ˜ dmnorm(mu1[1:6], Sigma1[1:6, 1:6])
for(i in 2:n) {

theta[i,1:6] ˜ dmnorm(mu2[1:6] + rho * theta[i-1,1:6], Sigma2[1:6, 1:6])
}

##### Priors
rho ˜ dunif(0, 1)
for(i in 1:6) {

mu1[i] ˜ dnorm(0, 0.01)
mu2[i] ˜ dnorm(0, 0.01)

}

# initialize covariance matrices
# note: I sent R[,] as an argument. It’s a 6x6 diag(1/6.1) matrix
Sigma1[1:6,1:6] ˜ dwish(R[,], 6.1)
Sigma2[1:6,1:6] ˜ dwish(R[,], 6.1)

# satellite characteristics
Y1_variance ˜ dgamma(3, 0.5)
Y2_variance ˜ dgamma(0.1, 0.1)
Y3_variance ˜ dgamma(0.1, 0.1)
Y2_bias ˜ dunif(-2, 2)
Y3_bias ˜ dunif(-2, 2)

For reference, one of the Bayesian SLR models referenced as step 1 is:

# Likelihood
for(i in 1:n) {

Y1[i] ˜ dnorm(mu[i], inv.var)
mu[i] <- beta[1] + beta[2]*Y2[i]

}

# Priors
beta[1] ˜ dnorm(0, 0.01)
beta[2] ˜ dnorm(0, 0.0001)
inv.var ˜ dgamma(0.01, 0.01)
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3 Convergence diagnostics

Overall, convergence across the 2,190 simulated θ values was good. I used three chains of 40,000
burn-in samples with 500,000 actual samples (with significant thinning). There were autocorrelation
problems with some θθθ posterior distributions, but they were mostly eradicated by increasing the
sample sizes. If I were to continue to improve this analysis, I would try to improve the Geweke
diagnostics at the edge cases.

Table 1: Effective sample sizes (percentiles)

1% 10% 25% 50% 75% 90% 99%

19,457 33,497 44,366 54,366 58,819 60,000 61,157

Table 2: Gelman diagnostics (percentiles)

1% 10% 25% 50% 75% 90% 99%

1.0000 1.0000 1.0000 1.0000 1.0001 1.0002 1.0004

Table 3: Geweke diagnostics (percentiles)

1% 10% 25% 50% 75% 90% 99%

-2.14 -1.21 -0.66 0.02 0.71 1.39 2.31

All the trace plots appeared fine. They all looked like:
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4 Final results

I performed three checks to confirm the point estimates produced by my analysis were reasonable.
First, I wanted to make sure the point estimates for θθθ when Y1Y1Y1 wasn’t missing were close to Y1Y1Y1.
They are: the MSE between θ̂̂θ̂θ and Y1Y1Y1 when Y1Y1Y1 is not missing is only 0.005.

Second, I wanted to make sure the pattern of
∑6

j=1 θ̂t,jθ̂t,jθ̂t,j/6 wasn’t entirely different from that of Y3Y3Y3.
I assumed Y3Y3Y3 was noisy and biased, so I wouldn’t expect the results to perfectly match up, but
they should be similar. In fact, the results match well.

Finally, I made my own θθθ randomly using the same procedure as Dr. Reich, generated my own
Y1, Y2, and Y3 data (missing in the same spots and with noise and biases thrown in), and then
attempted to run my analysis against my own simulated data. To summarize briefly, I generated
data with a lot more variance than Dr. Reich’s, but most of my individual squared errors were still
less than 1.
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