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This experiment was based on a previous x-ray crystallography experiment. Data consisted of n = 

1,000 observations of angles (ɵ) and a count (Y). Figure 1 shows the plotted data with ɵ on the x-axis and 

Y on the y-axis. The objective of this study was to estimate the number of peaks and their locations in 

order to identify the material that was sampled. 

 

Figure 1: Data plotted of n = 1,000 observations with angles (ɵ) on the x axis and counts(Y) on the y axis 

 

The following model was used to fit the data: 

Y ~Poisson[λ(ɵ)] where λ(ɵ) = α0 + ∑ 𝜙(ɵ; γj, τj) βj
𝐽
𝑗=1  

Where α > 0 is the background intensity or the amount of error of the x-ray crystallography, ϕ (ɵ; γ, τ) = 

exp [-
(ɵ−𝛾)2

2𝜏2 ] is the Gaussian peak function which details the shape of the peak, and the jth peak is 

described by the location of the center of the peak γj which is between 0 and 90, τj > 0 is the width or 

variance of the peak, and βj > 0 is the intensity or height of the peaks.  

 First, three models with priors were created to potentially model the data. The three models were 

to model J= 5, 6, and 7 peaks, respectively. For all models, γ was fit with a uniform prior (0, 90) which 

was the range of the ɵ values and τ, β, and α were fit with gamma priors (0.1, 0.1). These priors were set 

to be uninformative because there was no prior information available. Initial values were also set for all 

the models. For the five peak model, the initial values of γ were set to 10, 23, 43, 65, and 80; τ were all 

set to 1; and β were set to 25, 19, 13, 9, and 10. For the six peak model, the initial values of γ were set to 

10, 23, 43, 65, 80, and 83; τ were all set to 1; and β were set to 25, 19, 13, 9, 10, and 6. For the seven peak 

model, the initial values of γ were set to 10, 23, 43, 65, 80, 81, and 83; τ were all set to 1; and β were set 

to 25, 19, 13, 9, 10, 7, and 6. These values were based on the data as it was observed in figure 1.  

 Next, the models were created in JAGS using the jag.model function in R with 2 chains used in 

the creation of each model. After the models are created in JAGS, they are updated with a burn in. For 

each of the three models, a burn in of 5,000 iterations was done. After the 5,000 burn-in iterations, 10,000 

more iterations were run to extract the samples from each model for γ, τ, and β. The penalized deviance 
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was extracted from the model to determine which model had the best fit. The penalized deviance for the 

models were 2901, 2788, and 2788 for the five, six, and seven peak models respectively. The lower the 

penalized deviance when comparing models, the better fit the model is for the data. Based on these 

penalized deviances, the six and seven peak models fit equally well to this data with a penalized deviance 

of 2788. 

 Since models six and seven were equally fit based on the penalized deviance, the mean estimates 

and convergence were assessed to determine if one of the models fit the data better than the other.  The 

mean estimates and standard deviations for γ, τ, and β for the six and seven peak models is found in table 

1. The values for γ6 and γ7 for the seven peak model had greatly increase standard deviations compare to 

the standard deviations of the six peak model, which could be indicative of a problem with model 

convergence at that location. Since there is a potential problem at γ6 and γ7, the convergence plots were 

considered for these locations. Figure 2 compares the convergence between γ6 in the six peak model and 

γ6 and γ7 in the seven peak model. This figure clearly shows that the two chains run in the six peak model 

converged together, while the chains in the seven peak model did not show convergence i.e. the lines did 

not come together at the same point at the same time. With this information, it appears as if the six peak 

model was the best fit for this data.  

 

Variable Six Peak Model Seven Peak Model 

Mean SD Mean SD 

γ1 10.00 0.05 10.00 0.05 

γ2 24.92 0.06 24.92 0.06 

γ3 43.96 0.08 43.96 0.08 

γ4 66.01 0.13 66.00 0.13 

γ5 80.13 0.13 80.13 0.13 

γ6 85.97 0.08 65.66 27.41 

γ7 . . 65.83 27.45 

τ1 1.24 0.04 1.24 0.04 

τ2 1.31 0.05 1.31 0.05 

τ3 1.24 0.06 1.24 0.06 

τ4 1.54 0.11 1.54 0.11 

τ5 1.72 0.11 1.72 0.11 

τ6 0.47 0.06 0.28 0.22 

τ7 . . 0.25 0.23 

β1 18.52 0.93 18.50 0.95 

β2 14.37 0.80 14.34 0.81 

β3 9.53 0.69 9.52 0.68 

β4 4.95 0.46 4.95 0.46 

β5 5.44 0.46 5.43 0.47 

β6 4.75 0.81 2.48 2.38 

β7 . . 2.86 3.15 

Table 1: Column one shows the variables γ, τ, and β for 1-7. Columns 2 and 4 are the means of the 

sampled variables for the six and seven peak models, respectively and columns 3 and 5 are the standard 

deviations for the sampled variables for the models as well. 
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Figure 2: The plot on the left shows the convergence of γ6 for the six peak model. The two plots on the 

right show the convergence of γ6 and γ7 for the seven peak model. 

 Finally, it can be concluded that the best model to fit this data is a six peak model (J=6) and the 

locations of these peaks are based on the γ from this model which were at 10.00, 24.92, 43.96, 66.01, 

80.13, and 85.97. The 95% intervals quantify the uncertainty for these γ estimates and can be found in 

table 2. Figure 3 shows how the mean estimates fit the data with the 95% intervals. The plots in figure 4 

show that the two chains that were run for the six peak model converged for all γ. 

Variable 2.5% Quantile 97.5% Quantile 

γ1 9.90 10.10 

γ2 24.80 25.05 

γ3 43.81 44.12 

γ4 65.75 66.26 

γ5 79.88 80.38 

γ6 85.82 86.12 

Table 2: The γ variables are found in the first column. Column two contains the lower bound of the 95% 

interval and column three contains the upper bound of the 95% interval.  

 

Figure 3: Mean of λ estimates fit to the data (solid line) and the 95% interval also fit to the data (dashed 

line) 
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Figure 4: Convergence of all γ variables using the six peak model 
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R Code: 

rm(list = ls()) 

dev.off() 

data = read.csv("C:/Users/Cassie/Documents/Bayes/xraydata.csv", header=TRUE, na.strings = ".") 

Y = data$Y 

theta = data$theta 

n = 1000 

library(rjags) 

#Initial Plot 

plot(data$theta,data$Y, main = "X-Ray Crystallography Experiment",  xlab = "Theta", ylab = "Y") 

### 5 Peaks ### 

J = 5 

model5peak<- "model{ 

#Model and Priors 

for(i in 1:n){ 

Y[i] ~ dpois(lambda[i]) 

lambda[i] <- alpha + exp(-((theta[i]-gamma[1])^2)/(2*tau[1]^2))*beta[1] +  

exp(-((theta[i]-gamma[2])^2)/(2*tau[2]^2))*beta[2]+ 

exp(-((theta[i]-gamma[3])^2)/(2*tau[3]^2))*beta[3]+ 

exp(-((theta[i]-gamma[4])^2)/(2*tau[4]^2))*beta[4]+ 

exp(-((theta[i]-gamma[5])^2)/(2*tau[5]^2))*beta[5] 

} 

for(i in 1:J){ 

tau[i] ~ dgamma(0.1,0.1) 

beta[i] ~ dgamma(0.1,0.1) 

gamma[i] ~ dunif(0,90) 

} 

alpha ~ dgamma(0.1,0.1) 

}" 

#Initial Values 

initvals  <- function() {list(tau = c(1, 1, 1, 1, 1), beta = c(25, 19, 13, 9, 10), gamma = c(10, 23, 43, 65, 80))}  
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#Run JAGS 

model5 <- jags.model(textConnection(model5peak), data = list(Y=Y, theta=theta, n=n, J=J),inits = initvals, n.chains = 
2, quiet=TRUE) 

#Burn in -> 5,000 iterations 

update(model5, 5000, progress.bar="none") 

#Extracting Samples from the Model -> 10,000 iterations 

samp51 <- coda.samples(model5, variable.names=c("beta", "gamma", "tau"), n.iter=10000, progress.bar="none") 

samp52 <- coda.samples(model5, variable.names=c("lambda"), n.iter=10000, progress.bar="none") 

#Penalized Deviance from the Model 

dic1 <- dic.samples(model5, variable.names=c("beta", "gamma", "tau"), n.iter=10000, progress.bar="none") 

 #Conversion Plots 

plot(samp51) 

#Summary of Samples 

sum51 <- summary(samp51) 

print(sum51) 

sum52 <- summary(samp52) 

#Plotting Mean and 95% Quantiles for Samples 

q1 <- sum52$quantiles 

plot(data$theta,data$Y, main = "Five Peak Line Fit",  xlab = "Theta", ylab = "Y") 

lines(theta[1:n],q1[,1],col=4,lty=2,lwd=2) 

lines(theta[1:n],q1[,3],col=4,lty=1,lwd=2) 

lines(theta[1:n],q1[,5],col=4,lty=2,lwd=2) 

legend("topright",c("Mean","95% interval"),lty=1:2,col=4,lwd=2,bg=gray(1),inset=0.05,cex=1.5) 

### 6 Peaks ### 

J= 6 

model6peak<- "model{ 

#Model and Priors 

for(i in 1:n){ 

Y[i] ~ dpois(lambda[i]) 

lambda[i] <- alpha + exp(-((theta[i]-gamma[1])^2)/(2*tau[1]^2))*beta[1] +  

exp(-((theta[i]-gamma[2])^2)/(2*tau[2]^2))*beta[2]+ 

exp(-((theta[i]-gamma[3])^2)/(2*tau[3]^2))*beta[3]+ 
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exp(-((theta[i]-gamma[4])^2)/(2*tau[4]^2))*beta[4]+ 

exp(-((theta[i]-gamma[5])^2)/(2*tau[5]^2))*beta[5]+ 

exp(-((theta[i]-gamma[6])^2)/(2*tau[6]^2))*beta[6] 

} 

for(i in 1:J){ 

tau[i] ~ dgamma(0.1,0.1) 

beta[i] ~ dgamma(0.1,0.1) 

gamma[i] ~ dunif(0,90) 

} 

alpha ~ dgamma(0.1,0.1) 

}" 

init  <- function() {list(tau = c(1, 1, 1, 1, 1, 1), beta = c(25, 19, 13, 9, 10, 6), gamma = c(10, 23, 43, 65, 80, 83))}  

#Run JAGS 

model6 <- jags.model(textConnection(model6peak), data = list(Y=Y, theta=theta, n=n, J=J),inits = initvals, n.chains = 
2, quiet=TRUE) 

#Burn in -> 5,000 iterations 

update(model6, 5000, progress.bar="none") 

#Extracting Samples from the Model -> 10,000 iterations 

samp61 <- coda.samples(model6, variable.names=c("beta", "gamma", "tau"), n.iter=10000, progress.bar="none") 

samp62 <- coda.samples(model6, variable.names=c("lambda"), n.iter=10000, progress.bar="none") 

#Penalized Deviance from the Model 

dic6 <- dic.samples(model6, variable.names=c("beta", "gamma", "tau"), n.iter=10000, progress.bar="none") 

#Conversion Plots 

plot(samp61) 

#Summary of Samples 

sum61 <- summary(samp61) 

print(sum61) 

sum62 <- summary(samp62) 

#Plotting Mean and 95% Quantiles for Samples 

q2 <- sum62$quantiles 

plot(data$theta,data$Y, main = "Six Peak Line Fit",  xlab = "Theta", ylab = "Y") 

lines(theta[1:n],q2[,1],col=4,lty=2,lwd=2) 
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lines(theta[1:n],q2[,3],col=4,lty=1,lwd=2) 

lines(theta[1:n],q2[,5],col=4,lty=2,lwd=2) 

legend("topright",c("Mean","95% interval"),lty=1:2,col=4,lwd=2,bg=gray(1),inset=0.05,cex=1.5) 

### 7 Peaks ###  

J = 7 

model7peak<- "model{ 

#Model and Priors 

for(i in 1:n){ 

Y[i] ~ dpois(lambda[i]) 

lambda[i] <- alpha + exp(-((theta[i]-gamma[1])^2)/(2*tau[1]^2))*beta[1] +  

exp(-((theta[i]-gamma[2])^2)/(2*tau[2]^2))*beta[2]+ 

exp(-((theta[i]-gamma[3])^2)/(2*tau[3]^2))*beta[3]+ 

exp(-((theta[i]-gamma[4])^2)/(2*tau[4]^2))*beta[4]+ 

exp(-((theta[i]-gamma[5])^2)/(2*tau[5]^2))*beta[5]+ 

exp(-((theta[i]-gamma[6])^2)/(2*tau[6]^2))*beta[6]+ 

exp(-((theta[i]-gamma[7])^2)/(2*tau[7]^2))*beta[7] 

} 

for(i in 1:J){ 

tau[i] ~ dgamma(0.1,0.1) 

beta[i] ~ dgamma(0.1,0.1) 

gamma[i] ~ dunif(0,90) 

} 

alpha ~ dgamma(0.1,0.1) 

}" 

initvals  <- function() {list(tau = c(1, 1, 1, 1, 1, 1, 1), beta = c(25, 19, 13, 9, 10, 7, 6), gamma = c(10, 23, 43, 65, 80, 81, 
83))}  

#Run JAGS 

model7 <- jags.model(textConnection(model7peak), data = list(Y=Y, theta=theta, n=n, J=J),inits = initvals, n.chains = 
2, quiet=TRUE) 

#Burn in -> 5,000 iterations 

update(model7, 5000, progress.bar="none") 
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#Extracting Samples from the Model -> 10,000 iterations 

samp71 <- coda.samples(model7, variable.names=c("beta", "gamma", "tau"), n.iter=10000, progress.bar="none") 

samp72 <- coda.samples(model7, variable.names=c("lambda"), n.iter=10000, progress.bar="none") 

#Penalized Deviance from the Model 

dic7 <- dic.samples(model7, variable.names=c("beta", "gamma", "tau"), n.iter=10000, progress.bar="none") 

Print(dic7) 

#Conversion Plots 

plot(samp71) 

#Summary of Samples 

sum71 <- summary(samp71) 

print(sum71) 

sum72 <- summary(samp72) 

#Plotting Mean and 95% Quantiles for Samples 

q3 <- sum72$quantiles 

plot(data$theta,data$Y, main = "Seven Peak Line Fit",  xlab = "Theta", ylab = "Y") 

lines(theta[1:n],q3[,1],col=4,lty=2,lwd=2) 

lines(theta[1:n],q3[,3],col=4,lty=1,lwd=2) 

lines(theta[1:n],q3[,5],col=4,lty=2,lwd=2) 

legend("topright",c("Mean","95% interval"),lty=1:2,col=4,lwd=2,bg=gray(1),inset=0.05,cex=1.5) 


